Spaces:
Running
on
Zero
Running
on
Zero
jedick
commited on
Commit
·
7879fc7
1
Parent(s):
0eb9d15
Remove barplot
Browse files
app.py
CHANGED
@@ -50,28 +50,6 @@ if gr.NO_RELOAD:
|
|
50 |
)
|
51 |
|
52 |
|
53 |
-
def prediction_to_df(prediction=None):
|
54 |
-
"""
|
55 |
-
Convert prediction text to DataFrame for barplot
|
56 |
-
"""
|
57 |
-
if prediction is None or prediction == "":
|
58 |
-
# Show an empty plot for app initialization or auto-reload
|
59 |
-
prediction = {"SUPPORT": 0, "NEI": 0, "REFUTE": 0}
|
60 |
-
elif "Model" in prediction:
|
61 |
-
# Show full-height bars when the model is changed
|
62 |
-
prediction = {"SUPPORT": 1, "NEI": 1, "REFUTE": 1}
|
63 |
-
else:
|
64 |
-
# Convert predictions text to dictionary
|
65 |
-
prediction = eval(prediction)
|
66 |
-
# Use custom order for labels (pipe() returns labels in descending order of softmax score)
|
67 |
-
labels = ["SUPPORT", "NEI", "REFUTE"]
|
68 |
-
prediction = {k: prediction[k] for k in labels}
|
69 |
-
# Convert dictionary to DataFrame with one column (Probability)
|
70 |
-
df = pd.DataFrame.from_dict(prediction, orient="index", columns=["Probability"])
|
71 |
-
# Move the index to the Class column
|
72 |
-
return df.reset_index(names="Class")
|
73 |
-
|
74 |
-
|
75 |
# Setup theme without background image
|
76 |
my_theme = gr.Theme.from_hub("NoCrypt/miku")
|
77 |
my_theme.set(body_background_fill="#FFFFFF", body_background_fill_dark="#000000")
|
@@ -127,22 +105,44 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
127 |
completion_tokens = gr.Number(
|
128 |
label="Completion tokens", visible=False
|
129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
with gr.Column(scale=2):
|
132 |
-
|
133 |
-
with gr.Accordion(visible=False):
|
134 |
-
prediction = gr.Textbox(label="Prediction")
|
135 |
-
barplot = gr.BarPlot(
|
136 |
-
prediction_to_df,
|
137 |
-
x="Class",
|
138 |
-
y="Probability",
|
139 |
-
color="Class",
|
140 |
-
color_map={"SUPPORT": "green", "NEI": "#888888", "REFUTE": "#FF8888"},
|
141 |
-
inputs=prediction,
|
142 |
-
y_lim=([0, 1]),
|
143 |
-
visible=False,
|
144 |
-
)
|
145 |
-
label = gr.Label(label="Prediction")
|
146 |
with gr.Accordion("Feedback"):
|
147 |
gr.Markdown(
|
148 |
"*Provide the correct label to help improve this app*<br>**NOTE:** The claim and evidence will also be saved"
|
@@ -189,71 +189,19 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
189 |
"label"
|
190 |
].tolist(),
|
191 |
)
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
)
|
206 |
-
with gr.Column(scale=2):
|
207 |
-
gr.Markdown(
|
208 |
-
"""
|
209 |
-
### To make the prediction:
|
210 |
-
|
211 |
-
- Hit 'Enter' in the **Claim** text box OR
|
212 |
-
- Hit 'Shift-Enter' in the **Evidence** text box
|
213 |
-
|
214 |
-
_The prediction is also made after clicking **Get Evidence**_
|
215 |
-
"""
|
216 |
-
)
|
217 |
-
|
218 |
-
with gr.Column(scale=2):
|
219 |
-
with gr.Accordion("Settings", open=False):
|
220 |
-
# Create dropdown menu to select the model
|
221 |
-
model = gr.Dropdown(
|
222 |
-
choices=[
|
223 |
-
# TODO: For bert-base-uncased, how can we set num_labels = 2 in HF pipeline?
|
224 |
-
# (num_labels is available in AutoModelForSequenceClassification.from_pretrained)
|
225 |
-
# "bert-base-uncased",
|
226 |
-
"MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
|
227 |
-
"jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint",
|
228 |
-
],
|
229 |
-
value=MODEL_NAME,
|
230 |
-
label="Model",
|
231 |
-
)
|
232 |
-
radio = gr.Radio(
|
233 |
-
["label", "barplot"], value="label", label="Prediction"
|
234 |
-
)
|
235 |
-
with gr.Accordion("Sources", open=False):
|
236 |
-
gr.Markdown(
|
237 |
-
"""
|
238 |
-
#### *Capstone project*
|
239 |
-
- <i class="fa-brands fa-github"></i> [jedick/MLE-capstone-project](https://github.com/jedick/MLE-capstone-project) (project repo)
|
240 |
-
- <i class="fa-brands fa-github"></i> [jedick/AI4citations](https://github.com/jedick/AI4citations) (app repo)
|
241 |
-
#### *Text Classification*
|
242 |
-
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint](https://huggingface.co/jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint) (fine-tuned)
|
243 |
-
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) (base)
|
244 |
-
#### *Evidence Retrieval*
|
245 |
-
- <i class="fa-brands fa-github"></i> [xhluca/bm25s](https://github.com/xhluca/bm25s) (BM25S)
|
246 |
-
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [deepset/deberta-v3-large-squad2](https://huggingface.co/deepset/deberta-v3-large-squad2) (DeBERTa)
|
247 |
-
- <img src="https://upload.wikimedia.org/wikipedia/commons/4/4d/OpenAI_Logo.svg" style="height: 1.2em; display: inline-block;"> [gpt-4o-mini-2024-07-18](https://platform.openai.com/docs/pricing) (GPT)
|
248 |
-
#### *Datasets for fine-tuning*
|
249 |
-
- <i class="fa-brands fa-github"></i> [allenai/SciFact](https://github.com/allenai/scifact) (SciFact)
|
250 |
-
- <i class="fa-brands fa-github"></i> [ScienceNLP-Lab/Citation-Integrity](https://github.com/ScienceNLP-Lab/Citation-Integrity) (CitInt)
|
251 |
-
#### *Other sources*
|
252 |
-
- <img src="https://plos.org/wp-content/uploads/2020/01/logo-color-blue.svg" style="height: 1.4em; display: inline-block;"> [Medicine](https://doi.org/10.1371/journal.pmed.0030197), <i class="fa-brands fa-wikipedia-w"></i> [CRISPR](https://en.wikipedia.org/wiki/CRISPR) (evidence retrieval examples)
|
253 |
-
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [nyu-mll/multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli/viewer/default/train?row=37&views%5B%5D=train) (MNLI example)
|
254 |
-
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [NoCrypt/miku](https://huggingface.co/spaces/NoCrypt/miku) (theme)
|
255 |
-
"""
|
256 |
-
)
|
257 |
|
258 |
# Functions
|
259 |
|
@@ -284,8 +232,7 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
284 |
("REFUTE" if k in ["REFUTE", "contradiction"] else k): v
|
285 |
for k, v in prediction.items()
|
286 |
}
|
287 |
-
|
288 |
-
return prediction, prediction
|
289 |
|
290 |
def select_model(model_name):
|
291 |
"""
|
@@ -298,15 +245,6 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
298 |
model=MODEL_NAME,
|
299 |
)
|
300 |
|
301 |
-
def change_visualization(choice):
|
302 |
-
if choice == "barplot":
|
303 |
-
barplot = gr.update(visible=True)
|
304 |
-
label = gr.update(visible=False)
|
305 |
-
elif choice == "label":
|
306 |
-
barplot = gr.update(visible=False)
|
307 |
-
label = gr.update(visible=True)
|
308 |
-
return barplot, label
|
309 |
-
|
310 |
# From gradio/client/python/gradio_client/utils.py
|
311 |
def is_http_url_like(possible_url) -> bool:
|
312 |
"""
|
@@ -354,13 +292,13 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
354 |
return f"Unknown retrieval method: {method}"
|
355 |
|
356 |
def append_feedback(
|
357 |
-
claim: str, evidence: str, model: str,
|
358 |
) -> None:
|
359 |
"""
|
360 |
Append input/outputs and user feedback to a JSON Lines file.
|
361 |
"""
|
362 |
# Get the first label (prediction with highest probability)
|
363 |
-
|
364 |
with USER_FEEDBACK_PATH.open("a") as f:
|
365 |
f.write(
|
366 |
json.dumps(
|
@@ -368,7 +306,7 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
368 |
"claim": claim,
|
369 |
"evidence": evidence,
|
370 |
"model": model,
|
371 |
-
"prediction":
|
372 |
"user_label": user_label,
|
373 |
"datetime": datetime.now().isoformat(),
|
374 |
}
|
@@ -435,7 +373,7 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
435 |
triggers=[claim.submit, evidence.submit],
|
436 |
fn=query_model,
|
437 |
inputs=[claim, evidence],
|
438 |
-
outputs=
|
439 |
)
|
440 |
|
441 |
# Get evidence from PDF and run the model
|
@@ -447,7 +385,7 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
447 |
).then(
|
448 |
fn=query_model,
|
449 |
inputs=[claim, evidence],
|
450 |
-
outputs=
|
451 |
api_name=False,
|
452 |
)
|
453 |
|
@@ -461,7 +399,7 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
461 |
).then(
|
462 |
fn=query_model,
|
463 |
inputs=[claim, evidence],
|
464 |
-
outputs=
|
465 |
api_name=False,
|
466 |
)
|
467 |
|
@@ -475,7 +413,7 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
475 |
).then(
|
476 |
fn=query_model,
|
477 |
inputs=[claim, evidence],
|
478 |
-
outputs=
|
479 |
api_name=False,
|
480 |
)
|
481 |
|
@@ -489,7 +427,7 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
489 |
).then(
|
490 |
fn=query_model,
|
491 |
inputs=[claim, evidence],
|
492 |
-
outputs=
|
493 |
api_name=False,
|
494 |
)
|
495 |
|
@@ -508,53 +446,37 @@ with gr.Blocks(theme=my_theme, head=font_awesome_html) as demo:
|
|
508 |
).then(
|
509 |
fn=query_model,
|
510 |
inputs=[claim, evidence],
|
511 |
-
outputs=
|
512 |
-
api_name=False,
|
513 |
-
)
|
514 |
-
|
515 |
-
# Change visualization
|
516 |
-
radio.change(
|
517 |
-
fn=change_visualization,
|
518 |
-
inputs=radio,
|
519 |
-
outputs=[barplot, label],
|
520 |
-
api_name=False,
|
521 |
-
)
|
522 |
-
|
523 |
-
# Clear the previous predictions when the model is changed
|
524 |
-
gr.on(
|
525 |
-
triggers=[model.select],
|
526 |
-
fn=lambda: "Model changed! Waiting for updated predictions...",
|
527 |
-
outputs=[prediction],
|
528 |
api_name=False,
|
529 |
)
|
530 |
|
531 |
-
# Change the model
|
532 |
model.change(
|
533 |
fn=select_model,
|
534 |
inputs=model,
|
535 |
).then(
|
536 |
fn=query_model,
|
537 |
inputs=[claim, evidence],
|
538 |
-
outputs=
|
539 |
api_name=False,
|
540 |
)
|
541 |
|
542 |
# Log user feedback when button is clicked
|
543 |
flag_support.click(
|
544 |
fn=save_feedback_support,
|
545 |
-
inputs=[claim, evidence, model,
|
546 |
outputs=None,
|
547 |
api_name=False,
|
548 |
)
|
549 |
flag_nei.click(
|
550 |
fn=save_feedback_nei,
|
551 |
-
inputs=[claim, evidence, model,
|
552 |
outputs=None,
|
553 |
api_name=False,
|
554 |
)
|
555 |
flag_refute.click(
|
556 |
fn=save_feedback_refute,
|
557 |
-
inputs=[claim, evidence, model,
|
558 |
outputs=None,
|
559 |
api_name=False,
|
560 |
)
|
|
|
50 |
)
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
# Setup theme without background image
|
54 |
my_theme = gr.Theme.from_hub("NoCrypt/miku")
|
55 |
my_theme.set(body_background_fill="#FFFFFF", body_background_fill_dark="#000000")
|
|
|
105 |
completion_tokens = gr.Number(
|
106 |
label="Completion tokens", visible=False
|
107 |
)
|
108 |
+
gr.Markdown(
|
109 |
+
"""
|
110 |
+
### App Usage:
|
111 |
+
|
112 |
+
- Input a **Claim**, then:
|
113 |
+
- Upload a PDF and click **Get Evidence** OR
|
114 |
+
- Input **Evidence** statements yourself
|
115 |
+
- Make the **Prediction**:
|
116 |
+
- Hit 'Enter' in the **Claim** text box OR
|
117 |
+
- Hit 'Shift-Enter' in the **Evidence** text box OR
|
118 |
+
- Click **Get Evidence**
|
119 |
+
"""
|
120 |
+
)
|
121 |
+
with gr.Accordion("Sources", open=False):
|
122 |
+
gr.Markdown(
|
123 |
+
"""
|
124 |
+
#### *Capstone project*
|
125 |
+
- <i class="fa-brands fa-github"></i> [jedick/MLE-capstone-project](https://github.com/jedick/MLE-capstone-project) (project repo)
|
126 |
+
- <i class="fa-brands fa-github"></i> [jedick/AI4citations](https://github.com/jedick/AI4citations) (app repo)
|
127 |
+
#### *Text Classification*
|
128 |
+
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint](https://huggingface.co/jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint) (fine-tuned)
|
129 |
+
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) (base)
|
130 |
+
#### *Evidence Retrieval*
|
131 |
+
- <i class="fa-brands fa-github"></i> [xhluca/bm25s](https://github.com/xhluca/bm25s) (BM25S)
|
132 |
+
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [deepset/deberta-v3-large-squad2](https://huggingface.co/deepset/deberta-v3-large-squad2) (DeBERTa)
|
133 |
+
- <img src="https://upload.wikimedia.org/wikipedia/commons/4/4d/OpenAI_Logo.svg" style="height: 1.2em; display: inline-block;"> [gpt-4o-mini-2024-07-18](https://platform.openai.com/docs/pricing) (GPT)
|
134 |
+
#### *Datasets for fine-tuning*
|
135 |
+
- <i class="fa-brands fa-github"></i> [allenai/SciFact](https://github.com/allenai/scifact) (SciFact)
|
136 |
+
- <i class="fa-brands fa-github"></i> [ScienceNLP-Lab/Citation-Integrity](https://github.com/ScienceNLP-Lab/Citation-Integrity) (CitInt)
|
137 |
+
#### *Other sources*
|
138 |
+
- <img src="https://plos.org/wp-content/uploads/2020/01/logo-color-blue.svg" style="height: 1.4em; display: inline-block;"> [Medicine](https://doi.org/10.1371/journal.pmed.0030197), <i class="fa-brands fa-wikipedia-w"></i> [CRISPR](https://en.wikipedia.org/wiki/CRISPR) (evidence retrieval examples)
|
139 |
+
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [nyu-mll/multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli/viewer/default/train?row=37&views%5B%5D=train) (MNLI example)
|
140 |
+
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [NoCrypt/miku](https://huggingface.co/spaces/NoCrypt/miku) (theme)
|
141 |
+
"""
|
142 |
+
)
|
143 |
|
144 |
with gr.Column(scale=2):
|
145 |
+
prediction = gr.Label(label="Prediction")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
with gr.Accordion("Feedback"):
|
147 |
gr.Markdown(
|
148 |
"*Provide the correct label to help improve this app*<br>**NOTE:** The claim and evidence will also be saved"
|
|
|
189 |
"label"
|
190 |
].tolist(),
|
191 |
)
|
192 |
+
# Create dropdown menu to select the model
|
193 |
+
model = gr.Dropdown(
|
194 |
+
choices=[
|
195 |
+
# TODO: For bert-base-uncased, how can we set num_labels = 2 in HF pipeline?
|
196 |
+
# (num_labels is available in AutoModelForSequenceClassification.from_pretrained)
|
197 |
+
# "bert-base-uncased",
|
198 |
+
"MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
|
199 |
+
"jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint",
|
200 |
+
],
|
201 |
+
value=MODEL_NAME,
|
202 |
+
label="Model",
|
203 |
+
info="Text classification model used for claim verification",
|
204 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
# Functions
|
207 |
|
|
|
232 |
("REFUTE" if k in ["REFUTE", "contradiction"] else k): v
|
233 |
for k, v in prediction.items()
|
234 |
}
|
235 |
+
return prediction
|
|
|
236 |
|
237 |
def select_model(model_name):
|
238 |
"""
|
|
|
245 |
model=MODEL_NAME,
|
246 |
)
|
247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
# From gradio/client/python/gradio_client/utils.py
|
249 |
def is_http_url_like(possible_url) -> bool:
|
250 |
"""
|
|
|
292 |
return f"Unknown retrieval method: {method}"
|
293 |
|
294 |
def append_feedback(
|
295 |
+
claim: str, evidence: str, model: str, prediction: str, user_label: str
|
296 |
) -> None:
|
297 |
"""
|
298 |
Append input/outputs and user feedback to a JSON Lines file.
|
299 |
"""
|
300 |
# Get the first label (prediction with highest probability)
|
301 |
+
_prediction = next(iter(prediction))
|
302 |
with USER_FEEDBACK_PATH.open("a") as f:
|
303 |
f.write(
|
304 |
json.dumps(
|
|
|
306 |
"claim": claim,
|
307 |
"evidence": evidence,
|
308 |
"model": model,
|
309 |
+
"prediction": _prediction,
|
310 |
"user_label": user_label,
|
311 |
"datetime": datetime.now().isoformat(),
|
312 |
}
|
|
|
373 |
triggers=[claim.submit, evidence.submit],
|
374 |
fn=query_model,
|
375 |
inputs=[claim, evidence],
|
376 |
+
outputs=prediction,
|
377 |
)
|
378 |
|
379 |
# Get evidence from PDF and run the model
|
|
|
385 |
).then(
|
386 |
fn=query_model,
|
387 |
inputs=[claim, evidence],
|
388 |
+
outputs=prediction,
|
389 |
api_name=False,
|
390 |
)
|
391 |
|
|
|
399 |
).then(
|
400 |
fn=query_model,
|
401 |
inputs=[claim, evidence],
|
402 |
+
outputs=prediction,
|
403 |
api_name=False,
|
404 |
)
|
405 |
|
|
|
413 |
).then(
|
414 |
fn=query_model,
|
415 |
inputs=[claim, evidence],
|
416 |
+
outputs=prediction,
|
417 |
api_name=False,
|
418 |
)
|
419 |
|
|
|
427 |
).then(
|
428 |
fn=query_model,
|
429 |
inputs=[claim, evidence],
|
430 |
+
outputs=prediction,
|
431 |
api_name=False,
|
432 |
)
|
433 |
|
|
|
446 |
).then(
|
447 |
fn=query_model,
|
448 |
inputs=[claim, evidence],
|
449 |
+
outputs=prediction,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
450 |
api_name=False,
|
451 |
)
|
452 |
|
453 |
+
# Change the model then update the predictions
|
454 |
model.change(
|
455 |
fn=select_model,
|
456 |
inputs=model,
|
457 |
).then(
|
458 |
fn=query_model,
|
459 |
inputs=[claim, evidence],
|
460 |
+
outputs=prediction,
|
461 |
api_name=False,
|
462 |
)
|
463 |
|
464 |
# Log user feedback when button is clicked
|
465 |
flag_support.click(
|
466 |
fn=save_feedback_support,
|
467 |
+
inputs=[claim, evidence, model, prediction],
|
468 |
outputs=None,
|
469 |
api_name=False,
|
470 |
)
|
471 |
flag_nei.click(
|
472 |
fn=save_feedback_nei,
|
473 |
+
inputs=[claim, evidence, model, prediction],
|
474 |
outputs=None,
|
475 |
api_name=False,
|
476 |
)
|
477 |
flag_refute.click(
|
478 |
fn=save_feedback_refute,
|
479 |
+
inputs=[claim, evidence, model, prediction],
|
480 |
outputs=None,
|
481 |
api_name=False,
|
482 |
)
|