AI4citations / app.py
jedick
Save user feedback to dataset in HF Hub
9d59e2b
raw
history blame
19.5 kB
import pandas as pd
import gradio as gr
from transformers import pipeline
import nltk
from retrieval import retrieve_from_pdf
import os
import json
from datetime import datetime
from pathlib import Path
from uuid import uuid4
def is_running_in_hf_spaces():
"""
Detects if app is running in Hugging Face Spaces
"""
return "SPACE_ID" in os.environ
if gr.NO_RELOAD:
# Resource punkt_tab not found during application startup on HF spaces
nltk.download("punkt_tab")
# Keep track of the model name in a global variable so correct model is shown after page refresh
# https://github.com/gradio-app/gradio/issues/3173
MODEL_NAME = "jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint"
pipe = pipeline(
"text-classification",
model=MODEL_NAME,
)
# Setup user feedback file for uploading to HF dataset
# https://huggingface.co/spaces/Wauplin/space_to_dataset_saver
# https://huggingface.co/docs/huggingface_hub/v0.16.3/en/guides/upload#scheduled-uploads
USER_FEEDBACK_DIR = Path("user_feedback")
USER_FEEDBACK_DIR.mkdir(parents=True, exist_ok=True)
USER_FEEDBACK_PATH = USER_FEEDBACK_DIR / f"train-{uuid4()}.json"
if is_running_in_hf_spaces():
from huggingface_hub import CommitScheduler
scheduler = CommitScheduler(
repo_id="AI4citations-feedback",
repo_type="dataset",
folder_path=USER_FEEDBACK_DIR,
path_in_repo="data",
)
def prediction_to_df(prediction=None):
"""
Convert prediction text to DataFrame for barplot
"""
if prediction is None or prediction == "":
# Show an empty plot for app initialization or auto-reload
prediction = {"SUPPORT": 0, "NEI": 0, "REFUTE": 0}
elif "Model" in prediction:
# Show full-height bars when the model is changed
prediction = {"SUPPORT": 1, "NEI": 1, "REFUTE": 1}
else:
# Convert predictions text to dictionary
prediction = eval(prediction)
# Rename dictionary keys to use consistent labels across models
prediction = {
("SUPPORT" if k == "entailment" else k): v for k, v in prediction.items()
}
prediction = {
("NEI" if k == "neutral" else k): v for k, v in prediction.items()
}
prediction = {
("REFUTE" if k == "contradiction" else k): v for k, v in prediction.items()
}
# Use custom order for labels (pipe() returns labels in descending order of softmax score)
labels = ["SUPPORT", "NEI", "REFUTE"]
prediction = {k: prediction[k] for k in labels}
# Convert dictionary to DataFrame with one column (Probability)
df = pd.DataFrame.from_dict(prediction, orient="index", columns=["Probability"])
# Move the index to the Class column
return df.reset_index(names="Class")
# Setup theme without background image
my_theme = gr.Theme.from_hub("NoCrypt/miku")
my_theme.set(body_background_fill="#FFFFFF", body_background_fill_dark="#000000")
# Custom CSS to center content
custom_css = """
.center-content {
text-align: center;
display:block;
}
"""
# Define the HTML for Font Awesome
font_awesome_html = '<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css" rel="stylesheet">'
# Gradio interface setup
with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
# Layout
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
gr.Markdown("# AI4citations")
gr.Markdown("## *AI-powered scientific citation verification*")
claim = gr.Textbox(
label="Claim",
info="aka hypothesis",
placeholder="Input claim",
)
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("Get Evidence from PDF"):
pdf_file = gr.File(
label="Upload PDF", type="filepath", height=120
)
get_evidence = gr.Button(value="Get Evidence")
top_k = gr.Slider(
1,
10,
value=5,
step=1,
interactive=True,
label="Top k sentences",
)
with gr.Column(scale=3):
evidence = gr.TextArea(
label="Evidence",
info="aka premise",
placeholder="Input evidence or use Get Evidence from PDF",
)
submit = gr.Button("3. Submit", visible=False)
with gr.Column(scale=2):
# Keep the prediction textbox hidden
with gr.Accordion(visible=False):
prediction = gr.Textbox(label="Prediction")
barplot = gr.BarPlot(
prediction_to_df,
x="Class",
y="Probability",
color="Class",
color_map={"SUPPORT": "green", "NEI": "#888888", "REFUTE": "#FF8888"},
inputs=prediction,
y_lim=([0, 1]),
visible=False,
)
label = gr.Label(label="Results")
with gr.Accordion("Feedback"):
gr.Markdown(
"*Click on the correct label to help improve this app*<br>**NOTE:** The claim and evidence will also be saved"
),
with gr.Row():
flag_support = gr.Button("Support")
flag_nei = gr.Button("NEI")
flag_refute = gr.Button("Refute")
with gr.Accordion("Examples"):
gr.Markdown("*Examples are run when clicked*"),
with gr.Row():
support_example = gr.Examples(
examples="examples/Support",
label="Support",
inputs=[claim, evidence],
example_labels=pd.read_csv("examples/Support/log.csv")[
"label"
].tolist(),
)
nei_example = gr.Examples(
examples="examples/NEI",
label="NEI",
inputs=[claim, evidence],
example_labels=pd.read_csv("examples/NEI/log.csv")[
"label"
].tolist(),
)
refute_example = gr.Examples(
examples="examples/Refute",
label="Refute",
inputs=[claim, evidence],
example_labels=pd.read_csv("examples/Refute/log.csv")[
"label"
].tolist(),
)
retrieval_example = gr.Examples(
examples="examples/retrieval",
label="Get Evidence from PDF",
inputs=[pdf_file, claim],
example_labels=pd.read_csv("examples/retrieval/log.csv")[
"label"
].tolist(),
)
with gr.Row():
with gr.Column(scale=3):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
### Usage:
- Input a **Claim**, then:
- Upload a PDF and click **Get Evidence** OR
- Input **Evidence** statements yourself
"""
)
with gr.Column(scale=2):
gr.Markdown(
"""
### To make predictions:
- Hit 'Enter' in the **Claim** text box OR
- Hit 'Shift-Enter' in the **Evidence** text box
_Predictions are also made after clicking **Get Evidence**_
"""
)
with gr.Column(scale=2):
with gr.Accordion("Settings", open=False):
# Create dropdown menu to select the model
model = gr.Dropdown(
choices=[
# TODO: For bert-base-uncased, how can we set num_labels = 2 in HF pipeline?
# (num_labels is available in AutoModelForSequenceClassification.from_pretrained)
# "bert-base-uncased",
"MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli",
"jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint",
],
value=MODEL_NAME,
label="Model",
)
radio = gr.Radio(["label", "barplot"], value="label", label="Results")
with gr.Accordion("Sources", open=False, elem_classes=["center_content"]):
gr.Markdown(
"""
#### *Capstone project*
- <i class="fa-brands fa-github"></i> [jedick/MLE-capstone-project](https://github.com/jedick/MLE-capstone-project) (project repo)
- <i class="fa-brands fa-github"></i> [jedick/AI4citations](https://github.com/jedick/AI4citations) (app repo)
"""
)
gr.Markdown(
"""
#### *Models*
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint](https://huggingface.co/jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint) (fine-tuned)
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) (base)
"""
)
gr.Markdown(
"""
#### *Datasets for fine-tuning*
- <i class="fa-brands fa-github"></i> [allenai/SciFact](https://github.com/allenai/scifact) (SciFact)
- <i class="fa-brands fa-github"></i> [ScienceNLP-Lab/Citation-Integrity](https://github.com/ScienceNLP-Lab/Citation-Integrity) (CitInt)
"""
)
gr.Markdown(
"""
#### *Other sources*
- <i class="fa-brands fa-github"></i> [xhluca/bm25s](https://github.com/xhluca/bm25s) (evidence retrieval)
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [nyu-mll/multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli/viewer/default/train?row=37&views%5B%5D=train) (MNLI example)
- <img src="https://plos.org/wp-content/uploads/2020/01/logo-color-blue.svg" style="height: 1.4em; display: inline-block;"> [Medicine](https://doi.org/10.1371/journal.pmed.0030197), <i class="fa-brands fa-wikipedia-w"></i> [CRISPR](https://en.wikipedia.org/wiki/CRISPR) (get evidence examples)
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [NoCrypt/miku](https://huggingface.co/spaces/NoCrypt/miku) (theme)
"""
)
# Functions
def query_model(claim, evidence):
"""
Get prediction for a claim and evidence pair
"""
prediction = {
# Send a dictionary containing {"text", "text_pair"} keys; use top_k=3 to get results for all classes
# https://huggingface.co/docs/transformers/v4.51.3/en/main_classes/pipelines#transformers.TextClassificationPipeline.__call__.inputs
# Put evidence before claim
# https://github.com/jedick/MLE-capstone-project
# Output {label: confidence} dictionary format as expected by gr.Label()
# https://github.com/gradio-app/gradio/issues/11170
d["label"]: d["score"]
for d in pipe({"text": evidence, "text_pair": claim}, top_k=3)
}
# Return two instances of the prediction to send to different Gradio components
return prediction, prediction
def select_model(model_name):
"""
Select the specified model
"""
global pipe, MODEL_NAME
MODEL_NAME = model_name
pipe = pipeline(
"text-classification",
model=MODEL_NAME,
)
def change_visualization(choice):
if choice == "barplot":
barplot = gr.update(visible=True)
label = gr.update(visible=False)
elif choice == "label":
barplot = gr.update(visible=False)
label = gr.update(visible=True)
return barplot, label
# From gradio/client/python/gradio_client/utils.py
def is_http_url_like(possible_url) -> bool:
"""
Check if the given value is a string that looks like an HTTP(S) URL.
"""
if not isinstance(possible_url, str):
return False
return possible_url.startswith(("http://", "https://"))
def select_example(value, evt: gr.EventData):
# Get the PDF file and claim from the event data
claim, evidence = value[1]
# Add the directory path
return claim, evidence
def select_retrieval_example(value, evt: gr.EventData):
"""
Get the PDF file and claim from the event data.
"""
pdf_file, claim = value[1]
# Add the directory path
if not is_http_url_like(pdf_file):
pdf_file = f"examples/retrieval/{pdf_file}"
return pdf_file, claim
def append_feedback(
claim: str, evidence: str, model: str, label: str, user_label: str
) -> None:
"""
Append input/outputs and user feedback to a JSON Lines file.
"""
with USER_FEEDBACK_PATH.open("a") as f:
f.write(
json.dumps(
{
"claim": claim,
"evidence": evidence,
"model": model,
"prediction": label,
"user_label": user_label,
"datetime": datetime.now().isoformat(),
}
)
)
f.write("\n")
gr.Success(f"Saved your feedback: {user_label}", duration=2, title="Thank you!")
def save_feedback_support(*args) -> None:
"""
Save user feedback: Support
"""
if is_running_in_hf_spaces():
# Use a thread lock to avoid concurrent writes from different users.
with scheduler.lock:
append_feedback(*args, user_label="Support")
else:
append_feedback(*args, user_label="Support")
def save_feedback_nei(*args) -> None:
"""
Save user feedback: NEI
"""
if is_running_in_hf_spaces():
# Use a thread lock to avoid concurrent writes from different users.
with scheduler.lock:
append_feedback(*args, user_label="NEI")
else:
append_feedback(*args, user_label="NEI")
def save_feedback_refute(*args) -> None:
"""
Save user feedback: Refute
"""
if is_running_in_hf_spaces():
# Use a thread lock to avoid concurrent writes from different users.
with scheduler.lock:
append_feedback(*args, user_label="Refute")
else:
append_feedback(*args, user_label="Refute")
# Event listeners
# Click the submit button or press Enter to submit
gr.on(
triggers=[claim.submit, evidence.submit, submit.click],
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
)
# Get evidence from PDF and run the model
gr.on(
triggers=[get_evidence.click],
fn=retrieve_from_pdf,
inputs=[pdf_file, claim, top_k],
outputs=evidence,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Handle "Support" examples
gr.on(
triggers=[support_example.dataset.select],
fn=select_example,
inputs=support_example.dataset,
outputs=[claim, evidence],
api_name=False,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Handle "NEI" examples
gr.on(
triggers=[nei_example.dataset.select],
fn=select_example,
inputs=nei_example.dataset,
outputs=[claim, evidence],
api_name=False,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Handle "Refute" examples
gr.on(
triggers=[refute_example.dataset.select],
fn=select_example,
inputs=refute_example.dataset,
outputs=[claim, evidence],
api_name=False,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Handle evidence retrieval examples: get evidence from PDF and run the model
gr.on(
triggers=[retrieval_example.dataset.select],
fn=select_retrieval_example,
inputs=retrieval_example.dataset,
outputs=[pdf_file, claim],
api_name=False,
).then(
fn=retrieve_from_pdf,
inputs=[pdf_file, claim, top_k],
outputs=evidence,
api_name=False,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Change visualization
radio.change(
fn=change_visualization,
inputs=radio,
outputs=[barplot, label],
api_name=False,
)
# Clear the previous predictions when the model is changed
gr.on(
triggers=[model.select],
fn=lambda: "Model changed! Waiting for updated predictions...",
outputs=[prediction],
api_name=False,
)
# Change the model the update the predictions
model.change(
fn=select_model,
inputs=model,
).then(
fn=query_model,
inputs=[claim, evidence],
outputs=[prediction, label],
api_name=False,
)
# Log user feedback when button is clicked
flag_support.click(
fn=save_feedback_support,
inputs=[claim, evidence, model, label],
outputs=None,
)
flag_nei.click(
fn=save_feedback_nei,
inputs=[claim, evidence, model, label],
outputs=None,
)
flag_refute.click(
fn=save_feedback_refute,
inputs=[claim, evidence, model, label],
outputs=None,
)
if __name__ == "__main__":
# allowed_paths is needed to upload PDFs from specific example directory
demo.launch(allowed_paths=[f"{os.getcwd()}/examples/retrieval"])