# Wan ## Training For LoRA training, specify `--training_type lora`. For full finetuning, specify `--training_type full-finetune`. See [this](../../examples/training/sft/wan/crush_smol_lora/) example training script for training Wan with Pika Effects Crush. ## Memory Usage TODO ## Inference Assuming your LoRA is saved and pushed to the HF Hub, and named `my-awesome-name/my-awesome-lora`, we can now use the finetuned model for inference: ```diff import torch from diffusers import WanPipeline from diffusers.utils import export_to_video pipe = WanPipeline.from_pretrained( "Wan-AI/Wan2.1-T2V-1.3B-Diffusers", torch_dtype=torch.bfloat16 ).to("cuda") + pipe.load_lora_weights("my-awesome-name/my-awesome-lora", adapter_name="wan-lora") + pipe.set_adapters(["wan-lora"], [0.75]) video = pipe("").frames[0] export_to_video(video, "output.mp4", fps=8) ``` You can refer to the following guides to know more about the model pipeline and performing LoRA inference in `diffusers`: * [Wan in Diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/wan) * [Load LoRAs for inference](https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference) * [Merge LoRAs](https://huggingface.co/docs/diffusers/main/en/using-diffusers/merge_loras)