Spaces:
Running
Running
Jatin Mehra
commited on
Commit
·
33c5afb
1
Parent(s):
447c09c
Refactor FastAPI application for improved modularity and maintainability
Browse files- app.py +0 -357
- app_refactored.py +107 -0
app.py
DELETED
@@ -1,357 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import dotenv
|
3 |
-
import pickle
|
4 |
-
import uuid
|
5 |
-
import shutil
|
6 |
-
import traceback
|
7 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
8 |
-
from fastapi.responses import JSONResponse
|
9 |
-
from fastapi.middleware.cors import CORSMiddleware
|
10 |
-
from fastapi.staticfiles import StaticFiles
|
11 |
-
from pydantic import BaseModel
|
12 |
-
import uvicorn
|
13 |
-
from preprocessing import (
|
14 |
-
model_selection,
|
15 |
-
process_pdf_file,
|
16 |
-
chunk_text,
|
17 |
-
create_embeddings,
|
18 |
-
build_faiss_index,
|
19 |
-
retrieve_similar_chunks,
|
20 |
-
agentic_rag,
|
21 |
-
tools as global_base_tools,
|
22 |
-
create_vector_search_tool
|
23 |
-
)
|
24 |
-
from sentence_transformers import SentenceTransformer
|
25 |
-
from langchain.memory import ConversationBufferMemory
|
26 |
-
|
27 |
-
# Load environment variables
|
28 |
-
dotenv.load_dotenv()
|
29 |
-
|
30 |
-
# Initialize FastAPI app
|
31 |
-
app = FastAPI(title="PDF Insight Beta", description="Agentic RAG for PDF documents")
|
32 |
-
|
33 |
-
# Add CORS middleware
|
34 |
-
app.add_middleware(
|
35 |
-
CORSMiddleware,
|
36 |
-
allow_origins=["*"],
|
37 |
-
allow_credentials=True,
|
38 |
-
allow_methods=["*"],
|
39 |
-
allow_headers=["*"],
|
40 |
-
)
|
41 |
-
|
42 |
-
# Create upload directory if it doesn't exist
|
43 |
-
UPLOAD_DIR = "uploads"
|
44 |
-
if not os.path.exists(UPLOAD_DIR):
|
45 |
-
os.makedirs(UPLOAD_DIR)
|
46 |
-
|
47 |
-
# Store active sessions
|
48 |
-
sessions = {}
|
49 |
-
|
50 |
-
# Define model for chat request
|
51 |
-
class ChatRequest(BaseModel):
|
52 |
-
session_id: str
|
53 |
-
query: str
|
54 |
-
use_search: bool = False
|
55 |
-
model_name: str = "meta-llama/llama-4-scout-17b-16e-instruct"
|
56 |
-
|
57 |
-
class SessionRequest(BaseModel):
|
58 |
-
session_id: str
|
59 |
-
|
60 |
-
# Function to save session data
|
61 |
-
def save_session(session_id, data):
|
62 |
-
sessions[session_id] = data # Keep non-picklable in memory for active session
|
63 |
-
|
64 |
-
pickle_safe_data = {
|
65 |
-
"file_path": data.get("file_path"),
|
66 |
-
"file_name": data.get("file_name"),
|
67 |
-
"chunks": data.get("chunks"), # Chunks with metadata (list of dicts)
|
68 |
-
"chat_history": data.get("chat_history", [])
|
69 |
-
# FAISS index, embedding model, and LLM model are not pickled, will be reloaded/recreated
|
70 |
-
}
|
71 |
-
|
72 |
-
with open(f"{UPLOAD_DIR}/{session_id}_session.pkl", "wb") as f:
|
73 |
-
pickle.dump(pickle_safe_data, f)
|
74 |
-
|
75 |
-
|
76 |
-
# Function to load session data
|
77 |
-
def load_session(session_id, model_name="llama3-8b-8192"): # Ensure model_name matches default
|
78 |
-
try:
|
79 |
-
if session_id in sessions:
|
80 |
-
cached_session = sessions[session_id]
|
81 |
-
# Ensure LLM and potentially other non-pickled parts are up-to-date or loaded
|
82 |
-
if cached_session.get("llm") is None or (hasattr(cached_session["llm"], "model_name") and cached_session["llm"].model_name != model_name):
|
83 |
-
cached_session["llm"] = model_selection(model_name)
|
84 |
-
if cached_session.get("model") is None: # Embedding model
|
85 |
-
cached_session["model"] = SentenceTransformer('BAAI/bge-large-en-v1.5')
|
86 |
-
if cached_session.get("index") is None and cached_session.get("chunks"): # FAISS index
|
87 |
-
embeddings, _ = create_embeddings(cached_session["chunks"], cached_session["model"])
|
88 |
-
cached_session["index"] = build_faiss_index(embeddings)
|
89 |
-
return cached_session, True
|
90 |
-
|
91 |
-
file_path_pkl = f"{UPLOAD_DIR}/{session_id}_session.pkl"
|
92 |
-
if os.path.exists(file_path_pkl):
|
93 |
-
with open(file_path_pkl, "rb") as f:
|
94 |
-
data = pickle.load(f)
|
95 |
-
|
96 |
-
original_pdf_path = data.get("file_path")
|
97 |
-
if data.get("chunks") and original_pdf_path and os.path.exists(original_pdf_path):
|
98 |
-
embedding_model_instance = SentenceTransformer('BAAI/bge-large-en-v1.5')
|
99 |
-
# Chunks are already {text: ..., metadata: ...}
|
100 |
-
recreated_embeddings, _ = create_embeddings(data["chunks"], embedding_model_instance)
|
101 |
-
recreated_index = build_faiss_index(recreated_embeddings)
|
102 |
-
recreated_llm = model_selection(model_name)
|
103 |
-
|
104 |
-
full_session_data = {
|
105 |
-
"file_path": original_pdf_path,
|
106 |
-
"file_name": data.get("file_name"),
|
107 |
-
"chunks": data.get("chunks"), # chunks_with_metadata
|
108 |
-
"chat_history": data.get("chat_history", []),
|
109 |
-
"model": embedding_model_instance, # SentenceTransformer model
|
110 |
-
"index": recreated_index, # FAISS index
|
111 |
-
"llm": recreated_llm # LLM
|
112 |
-
}
|
113 |
-
sessions[session_id] = full_session_data
|
114 |
-
return full_session_data, True
|
115 |
-
else:
|
116 |
-
print(f"Warning: Session data for {session_id} is incomplete or PDF missing. Cannot reconstruct.")
|
117 |
-
if os.path.exists(file_path_pkl): os.remove(file_path_pkl) # Clean up stale pkl
|
118 |
-
return None, False
|
119 |
-
|
120 |
-
return None, False
|
121 |
-
except Exception as e:
|
122 |
-
print(f"Error loading session {session_id}: {str(e)}")
|
123 |
-
print(traceback.format_exc())
|
124 |
-
return None, False
|
125 |
-
|
126 |
-
# Function to remove PDF file
|
127 |
-
def remove_pdf_file(session_id):
|
128 |
-
try:
|
129 |
-
# Check if the session exists
|
130 |
-
session_path = f"{UPLOAD_DIR}/{session_id}_session.pkl"
|
131 |
-
if os.path.exists(session_path):
|
132 |
-
# Load session data
|
133 |
-
with open(session_path, "rb") as f:
|
134 |
-
data = pickle.load(f)
|
135 |
-
|
136 |
-
# Delete PDF file if it exists
|
137 |
-
if data.get("file_path") and os.path.exists(data["file_path"]):
|
138 |
-
os.remove(data["file_path"])
|
139 |
-
|
140 |
-
# Remove session file
|
141 |
-
os.remove(session_path)
|
142 |
-
|
143 |
-
# Remove from memory if exists
|
144 |
-
if session_id in sessions:
|
145 |
-
del sessions[session_id]
|
146 |
-
|
147 |
-
return True
|
148 |
-
except Exception as e:
|
149 |
-
print(f"Error removing PDF file: {str(e)}")
|
150 |
-
return False
|
151 |
-
|
152 |
-
# Mount static files (we'll create these later)
|
153 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
154 |
-
|
155 |
-
# Route for the home page
|
156 |
-
@app.get("/")
|
157 |
-
async def read_root():
|
158 |
-
from fastapi.responses import RedirectResponse
|
159 |
-
return RedirectResponse(url="/static/index.html")
|
160 |
-
|
161 |
-
# Route to upload a PDF file
|
162 |
-
@app.post("/upload-pdf")
|
163 |
-
async def upload_pdf(
|
164 |
-
file: UploadFile = File(...),
|
165 |
-
model_name: str = Form("llama3-8b-8192") # Default model
|
166 |
-
):
|
167 |
-
session_id = str(uuid.uuid4())
|
168 |
-
file_path = None
|
169 |
-
|
170 |
-
try:
|
171 |
-
file_path = f"{UPLOAD_DIR}/{session_id}_{file.filename}"
|
172 |
-
with open(file_path, "wb") as buffer:
|
173 |
-
shutil.copyfileobj(file.file, buffer)
|
174 |
-
|
175 |
-
if not os.getenv("GROQ_API_KEY") and "llama" in model_name: # Llama specific check for Groq
|
176 |
-
raise ValueError("GROQ_API_KEY is not set for Groq Llama models.")
|
177 |
-
if not os.getenv("TAVILY_API_KEY"): # Needed for TavilySearchResults
|
178 |
-
print("Warning: TAVILY_API_KEY is not set. Web search will not function.")
|
179 |
-
|
180 |
-
documents = process_pdf_file(file_path)
|
181 |
-
chunks_with_metadata = chunk_text(documents, max_length=1000) # Increased from 256 to 1000 tokens for better context
|
182 |
-
|
183 |
-
embedding_model = SentenceTransformer('BAAI/bge-large-en-v1.5')
|
184 |
-
embeddings, _ = create_embeddings(chunks_with_metadata, embedding_model) # Chunks are already with metadata
|
185 |
-
|
186 |
-
index = build_faiss_index(embeddings)
|
187 |
-
llm = model_selection(model_name)
|
188 |
-
|
189 |
-
session_data = {
|
190 |
-
"file_path": file_path,
|
191 |
-
"file_name": file.filename,
|
192 |
-
"chunks": chunks_with_metadata, # Store chunks with metadata
|
193 |
-
"model": embedding_model, # SentenceTransformer instance
|
194 |
-
"index": index, # FAISS index instance
|
195 |
-
"llm": llm, # LLM instance
|
196 |
-
"chat_history": []
|
197 |
-
}
|
198 |
-
save_session(session_id, session_data)
|
199 |
-
|
200 |
-
return {"status": "success", "session_id": session_id, "message": f"Processed {file.filename}"}
|
201 |
-
|
202 |
-
except Exception as e:
|
203 |
-
if file_path and os.path.exists(file_path):
|
204 |
-
os.remove(file_path)
|
205 |
-
error_msg = str(e)
|
206 |
-
stack_trace = traceback.format_exc()
|
207 |
-
print(f"Error processing PDF: {error_msg}\nStack trace: {stack_trace}")
|
208 |
-
return JSONResponse(
|
209 |
-
status_code=500, # Internal server error for processing issues
|
210 |
-
content={"status": "error", "detail": error_msg, "type": type(e).__name__}
|
211 |
-
)
|
212 |
-
|
213 |
-
# Route to chat with the document
|
214 |
-
@app.post("/chat")
|
215 |
-
async def chat(request: ChatRequest):
|
216 |
-
# Validate query
|
217 |
-
if not request.query or not request.query.strip():
|
218 |
-
raise HTTPException(status_code=400, detail="Query cannot be empty")
|
219 |
-
|
220 |
-
if len(request.query.strip()) < 3:
|
221 |
-
raise HTTPException(status_code=400, detail="Query must be at least 3 characters long")
|
222 |
-
|
223 |
-
session, found = load_session(request.session_id, model_name=request.model_name)
|
224 |
-
if not found:
|
225 |
-
raise HTTPException(status_code=404, detail="Session not found or expired. Please upload a document first.")
|
226 |
-
|
227 |
-
try:
|
228 |
-
# Validate session data integrity
|
229 |
-
required_keys = ["index", "chunks", "model", "llm"]
|
230 |
-
missing_keys = [key for key in required_keys if key not in session]
|
231 |
-
if missing_keys:
|
232 |
-
print(f"Warning: Session {request.session_id} missing required data: {missing_keys}")
|
233 |
-
raise HTTPException(status_code=500, detail="Session data is incomplete. Please upload the document again.")
|
234 |
-
|
235 |
-
# Per-request memory to ensure chat history is correctly loaded for the agent
|
236 |
-
agent_memory = ConversationBufferMemory(memory_key="chat_history", input_key="input", return_messages=True)
|
237 |
-
for entry in session.get("chat_history", []):
|
238 |
-
agent_memory.chat_memory.add_user_message(entry["user"])
|
239 |
-
agent_memory.chat_memory.add_ai_message(entry["assistant"])
|
240 |
-
|
241 |
-
# Prepare tools for the agent for THIS request
|
242 |
-
current_request_tools = []
|
243 |
-
|
244 |
-
# 1. Add the document-specific vector search tool
|
245 |
-
vector_search_tool_instance = create_vector_search_tool(
|
246 |
-
faiss_index=session["index"],
|
247 |
-
document_chunks_with_metadata=session["chunks"], # Pass the correct variable
|
248 |
-
embedding_model=session["model"], # This is the SentenceTransformer model
|
249 |
-
max_chunk_length=1000,
|
250 |
-
k=10
|
251 |
-
)
|
252 |
-
current_request_tools.append(vector_search_tool_instance)
|
253 |
-
|
254 |
-
# 2. Conditionally add Tavily (web search) tool
|
255 |
-
if request.use_search:
|
256 |
-
if os.getenv("TAVILY_API_KEY"):
|
257 |
-
tavily_tool = next((tool for tool in global_base_tools if tool.name == "tavily_search_results_json"), None)
|
258 |
-
if tavily_tool:
|
259 |
-
current_request_tools.append(tavily_tool)
|
260 |
-
else: # Should not happen if global_base_tools is defined correctly
|
261 |
-
print("Warning: Tavily search requested, but tool misconfigured.")
|
262 |
-
else:
|
263 |
-
print("Warning: Tavily search requested, but TAVILY_API_KEY is not set.")
|
264 |
-
|
265 |
-
# Retrieve initial similar chunks for RAG context (can be empty if no good match)
|
266 |
-
# This context is given to the agent *before* it decides to use tools.
|
267 |
-
# k=5 means we retrieve up to 5 chunks for initial context.
|
268 |
-
# The agent can then use `vector_database_search` to search more if needed.
|
269 |
-
initial_similar_chunks = retrieve_similar_chunks(
|
270 |
-
request.query,
|
271 |
-
session["index"],
|
272 |
-
session["chunks"], # list of dicts {text:..., metadata:...}
|
273 |
-
session["model"], # SentenceTransformer model
|
274 |
-
k=5 # Number of chunks for initial context
|
275 |
-
)
|
276 |
-
|
277 |
-
print(f"Query: '{request.query}' - Found {len(initial_similar_chunks)} initial chunks")
|
278 |
-
if initial_similar_chunks:
|
279 |
-
print(f"Best chunk score: {initial_similar_chunks[0][1]:.4f}")
|
280 |
-
|
281 |
-
response = agentic_rag(
|
282 |
-
session["llm"],
|
283 |
-
current_request_tools, # Pass the dynamically assembled list of tools
|
284 |
-
query=request.query,
|
285 |
-
context_chunks=initial_similar_chunks,
|
286 |
-
Use_Tavily=request.use_search, # Still passed to agentic_rag for potential fine-grained logic, though prompt adapts to tools
|
287 |
-
memory=agent_memory
|
288 |
-
)
|
289 |
-
|
290 |
-
response_output = response.get("output", "Sorry, I could not generate a response.")
|
291 |
-
print(f"Generated response length: {len(response_output)} characters")
|
292 |
-
|
293 |
-
session["chat_history"].append({"user": request.query, "assistant": response_output})
|
294 |
-
save_session(request.session_id, session) # Save updated history and potentially other modified session state
|
295 |
-
|
296 |
-
return {
|
297 |
-
"status": "success",
|
298 |
-
"answer": response_output,
|
299 |
-
# Return context that was PRE-FETCHED for the agent, not necessarily all context it might have used via tools
|
300 |
-
"context_used": [{"text": chunk, "score": float(score), "metadata": meta} for chunk, score, meta in initial_similar_chunks]
|
301 |
-
}
|
302 |
-
|
303 |
-
except Exception as e:
|
304 |
-
print(f"Error processing chat query: {str(e)}\nTraceback: {traceback.format_exc()}")
|
305 |
-
raise HTTPException(status_code=500, detail=f"Error processing query: {str(e)}")
|
306 |
-
|
307 |
-
|
308 |
-
# Route to get chat history
|
309 |
-
@app.post("/chat-history")
|
310 |
-
async def get_chat_history(request: SessionRequest):
|
311 |
-
# Try to load session if not in memory
|
312 |
-
session, found = load_session(request.session_id)
|
313 |
-
if not found:
|
314 |
-
raise HTTPException(status_code=404, detail="Session not found")
|
315 |
-
|
316 |
-
return {
|
317 |
-
"status": "success",
|
318 |
-
"history": session.get("chat_history", [])
|
319 |
-
}
|
320 |
-
|
321 |
-
# Route to clear chat history
|
322 |
-
@app.post("/clear-history")
|
323 |
-
async def clear_history(request: SessionRequest):
|
324 |
-
# Try to load session if not in memory
|
325 |
-
session, found = load_session(request.session_id)
|
326 |
-
if not found:
|
327 |
-
raise HTTPException(status_code=404, detail="Session not found")
|
328 |
-
|
329 |
-
session["chat_history"] = []
|
330 |
-
save_session(request.session_id, session)
|
331 |
-
|
332 |
-
return {"status": "success", "message": "Chat history cleared"}
|
333 |
-
|
334 |
-
# Route to remove PDF from session
|
335 |
-
@app.post("/remove-pdf")
|
336 |
-
async def remove_pdf(request: SessionRequest):
|
337 |
-
success = remove_pdf_file(request.session_id)
|
338 |
-
|
339 |
-
if success:
|
340 |
-
return {"status": "success", "message": "PDF file and session removed successfully"}
|
341 |
-
else:
|
342 |
-
raise HTTPException(status_code=404, detail="Session not found or could not be removed")
|
343 |
-
|
344 |
-
# Route to list available models
|
345 |
-
@app.get("/models")
|
346 |
-
async def get_models():
|
347 |
-
# You can expand this list as needed
|
348 |
-
models = [
|
349 |
-
{"id": "meta-llama/llama-4-scout-17b-16e-instruct", "name": "Llama 4 Scout 17B"},
|
350 |
-
{"id": "llama-3.1-8b-instant", "name": "Llama 3.1 8B Instant"},
|
351 |
-
{"id": "llama-3.3-70b-versatile", "name": "Llama 3.3 70B Versatile"},
|
352 |
-
]
|
353 |
-
return {"models": models}
|
354 |
-
|
355 |
-
# Run the application if this file is executed directly
|
356 |
-
if __name__ == "__main__":
|
357 |
-
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_refactored.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Refactored FastAPI application for PDF Insight Beta.
|
3 |
+
|
4 |
+
This is the main application file that sets up the FastAPI app with modular components.
|
5 |
+
The core logic has been preserved while improving code organization and maintainability.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import uvicorn
|
9 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
11 |
+
from fastapi.staticfiles import StaticFiles
|
12 |
+
|
13 |
+
from configs.config import Config
|
14 |
+
from models.models import (
|
15 |
+
ChatRequest, SessionRequest, UploadResponse, ChatResponse,
|
16 |
+
ChatHistoryResponse, StatusResponse, ModelsResponse
|
17 |
+
)
|
18 |
+
from api import (
|
19 |
+
upload_pdf_handler, chat_handler, get_chat_history_handler,
|
20 |
+
clear_history_handler, remove_pdf_handler, root_handler, get_models_handler
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def create_app() -> FastAPI:
|
25 |
+
"""
|
26 |
+
Create and configure the FastAPI application.
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
Configured FastAPI application instance
|
30 |
+
"""
|
31 |
+
# Initialize FastAPI app
|
32 |
+
app = FastAPI(
|
33 |
+
title="PDF Insight Beta",
|
34 |
+
description="Agentic RAG for PDF documents"
|
35 |
+
)
|
36 |
+
|
37 |
+
# Add CORS middleware
|
38 |
+
app.add_middleware(
|
39 |
+
CORSMiddleware,
|
40 |
+
allow_origins=Config.CORS_ORIGINS,
|
41 |
+
allow_credentials=Config.CORS_CREDENTIALS,
|
42 |
+
allow_methods=Config.CORS_METHODS,
|
43 |
+
allow_headers=Config.CORS_HEADERS,
|
44 |
+
)
|
45 |
+
|
46 |
+
# Mount static files
|
47 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
48 |
+
|
49 |
+
return app
|
50 |
+
|
51 |
+
|
52 |
+
# Create app instance
|
53 |
+
app = create_app()
|
54 |
+
|
55 |
+
|
56 |
+
# Route definitions
|
57 |
+
@app.get("/")
|
58 |
+
async def read_root():
|
59 |
+
"""Root endpoint that redirects to the main application."""
|
60 |
+
return await root_handler()
|
61 |
+
|
62 |
+
|
63 |
+
@app.post("/upload-pdf", response_model=UploadResponse)
|
64 |
+
async def upload_pdf(file: UploadFile = File(...), model_name: str = Form(Config.DEFAULT_MODEL)):
|
65 |
+
"""Upload and process a PDF file."""
|
66 |
+
return await upload_pdf_handler(file, model_name)
|
67 |
+
|
68 |
+
|
69 |
+
@app.post("/chat", response_model=ChatResponse)
|
70 |
+
async def chat(request: ChatRequest):
|
71 |
+
"""Chat with the uploaded document."""
|
72 |
+
return await chat_handler(request)
|
73 |
+
|
74 |
+
|
75 |
+
@app.post("/chat-history", response_model=ChatHistoryResponse)
|
76 |
+
async def get_chat_history(request: SessionRequest):
|
77 |
+
"""Get chat history for a session."""
|
78 |
+
return await get_chat_history_handler(request)
|
79 |
+
|
80 |
+
|
81 |
+
@app.post("/clear-history", response_model=StatusResponse)
|
82 |
+
async def clear_history(request: SessionRequest):
|
83 |
+
"""Clear chat history for a session."""
|
84 |
+
return await clear_history_handler(request)
|
85 |
+
|
86 |
+
|
87 |
+
@app.post("/remove-pdf", response_model=StatusResponse)
|
88 |
+
async def remove_pdf(request: SessionRequest):
|
89 |
+
"""Remove PDF file and session data."""
|
90 |
+
return await remove_pdf_handler(request)
|
91 |
+
|
92 |
+
|
93 |
+
@app.get("/models", response_model=ModelsResponse)
|
94 |
+
async def get_models():
|
95 |
+
"""Get list of available models."""
|
96 |
+
return await get_models_handler()
|
97 |
+
|
98 |
+
|
99 |
+
def main():
|
100 |
+
"""
|
101 |
+
Main entry point for running the application.
|
102 |
+
"""
|
103 |
+
uvicorn.run("app_refactored:app", host="0.0.0.0", port=8000, reload=True)
|
104 |
+
|
105 |
+
|
106 |
+
if __name__ == "__main__":
|
107 |
+
main()
|