Divyansh Kushwaha
commited on
Commit
·
657a977
1
Parent(s):
d97cb07
APIs exposing file updated
Browse files
api.py
CHANGED
@@ -1,119 +1,127 @@
|
|
1 |
-
|
2 |
-
from fastapi
|
3 |
-
from
|
4 |
-
from google.
|
5 |
-
from
|
6 |
-
from
|
7 |
-
import
|
8 |
-
|
9 |
-
import
|
10 |
-
|
|
|
|
|
|
|
11 |
extract_titles_and_summaries,
|
12 |
perform_sentiment_analysis,
|
13 |
extract_topics_with_hf,
|
14 |
compare_articles
|
15 |
)
|
16 |
|
17 |
-
load_dotenv()
|
18 |
-
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
19 |
-
PRIVATE_KEY = os.getenv('PRIVATE_KEY').replace("\\n", "\n")
|
20 |
-
CLIENT_EMAIL = os.getenv('CLIENT_EMAIL')
|
21 |
|
22 |
-
app = FastAPI(title="Company Sentiment API", description="Get company news summaries with sentiment analysis")
|
23 |
|
24 |
-
llm=ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-8b-instant")
|
25 |
|
26 |
-
JSON_FILE_PATH = "final_summary.json"
|
27 |
-
AUDIO_FILE_PATH = "hindi_summary.mp3"
|
28 |
|
29 |
-
def get_tts_client():
|
30 |
-
|
|
|
31 |
"type": "service_account",
|
32 |
"private_key": PRIVATE_KEY,
|
33 |
"client_email": CLIENT_EMAIL,
|
34 |
"token_uri": "https://oauth2.googleapis.com/token"
|
35 |
})
|
36 |
-
return texttospeech.TextToSpeechClient(credentials=credentials)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
news_articles
|
41 |
-
news_articles =
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
if
|
49 |
-
|
|
|
50 |
else:
|
51 |
-
print("Hindi Text not generated")
|
52 |
|
53 |
try:
|
54 |
-
client = get_tts_client()
|
55 |
-
input_text = texttospeech.SynthesisInput(text=hindi_text)
|
56 |
-
voice = texttospeech.VoiceSelectionParams(
|
57 |
language_code="hi-IN",
|
58 |
name="hi-IN-Chirp3-HD-Kore"
|
59 |
)
|
60 |
-
audio_config = texttospeech.AudioConfig(audio_encoding=texttospeech.AudioEncoding.MP3)
|
61 |
-
response = client.synthesize_speech(input=input_text, voice=voice, audio_config=audio_config)
|
62 |
-
with open(AUDIO_FILE_PATH, "wb") as out:
|
63 |
out.write(response.audio_content)
|
64 |
-
print(f"Audio content written to file: {AUDIO_FILE_PATH}")
|
65 |
|
66 |
-
except Exception as e:
|
67 |
-
print(f"Error generating audio: {e}")
|
68 |
-
if not os.path.exists(AUDIO_FILE_PATH):
|
69 |
-
print(f"Audio file could not be found at {AUDIO_FILE_PATH}.")
|
70 |
|
71 |
-
final_summary["Audio"] = AUDIO_FILE_PATH
|
72 |
|
73 |
-
with open(JSON_FILE_PATH,"w",encoding="utf-8") as f:
|
74 |
-
json.dump(final_summary,f,ensure_ascii=False, indent=4)
|
75 |
-
|
76 |
-
|
|
|
77 |
'Company': final_summary["Company"],
|
78 |
'Articles': [
|
79 |
{
|
80 |
-
'Title': article.get('Title', 'No Title'),
|
81 |
-
'Summary': article.get('Summary', 'No Summary'),
|
82 |
-
'Sentiment': article.get('Sentiment', 'Unknown'),
|
83 |
-
'Score': article.get('Score', 0.0),
|
84 |
-
'Topics': article.get('Topics', [])
|
85 |
}
|
86 |
-
for article in final_summary["Articles"]
|
87 |
],
|
88 |
-
'Comparative Sentiment Score': {
|
89 |
-
'Sentiment Distribution': sentiment_counts,
|
90 |
-
'Coverage Differences': final_summary["Comparative Sentiment Score"].get("Coverage Differences", []),
|
91 |
-
'Topic Overlap': {
|
92 |
'Common Topics': final_summary["Comparative Sentiment Score"].get("Topic Overlap", {}).get("Common Topics", []),
|
93 |
'Unique Topics': final_summary["Comparative Sentiment Score"].get("Topic Overlap", {}).get("Unique Topics", {})
|
94 |
}
|
95 |
},
|
96 |
-
'Final Sentiment Analysis': final_summary["Final Sentiment Analysis"],
|
97 |
-
'Audio': AUDIO_FILE_PATH
|
98 |
}
|
99 |
|
100 |
-
@app.get("/")
|
101 |
def home():
|
102 |
-
return {"message": "Welcome to the Company Sentiment API"}
|
103 |
|
104 |
-
@app.post("/generateSummary")
|
105 |
-
def get_summary(company_name: str = Query(..., description="Enter company name")):
|
106 |
-
structured_summary = generate_summary(company_name)
|
107 |
-
return structured_summary
|
108 |
|
109 |
-
@app.get("/downloadJson")
|
110 |
def download_json():
|
111 |
-
return FileResponse(JSON_FILE_PATH, media_type="application/json", filename="final_summary.json")
|
112 |
|
113 |
-
@app.get("/downloadHindiAudio")
|
114 |
def download_audio():
|
115 |
-
return FileResponse(AUDIO_FILE_PATH, media_type="audio/mp3", filename="hindi_summary.mp3")
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
if __name__ == "__main__":
|
118 |
-
import uvicorn
|
119 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
1 |
+
# Importing important libraries
|
2 |
+
from fastapi import FastAPI, Query,HTTPException
|
3 |
+
from fastapi.responses import JSONResponse, FileResponse, StreamingResponse
|
4 |
+
from google.cloud import texttospeech
|
5 |
+
from google.oauth2.service_account import Credentials
|
6 |
+
from langchain.schema import HumanMessage
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
import json
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Importing utility functions for processing news articles
|
13 |
+
from utils import (
|
14 |
extract_titles_and_summaries,
|
15 |
perform_sentiment_analysis,
|
16 |
extract_topics_with_hf,
|
17 |
compare_articles
|
18 |
)
|
19 |
|
20 |
+
load_dotenv() # Loading environment variables from .env file
|
21 |
+
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
22 |
+
PRIVATE_KEY = os.getenv('PRIVATE_KEY').replace("\\n", "\n")
|
23 |
+
CLIENT_EMAIL = os.getenv('CLIENT_EMAIL')
|
24 |
|
25 |
+
app = FastAPI(title="Company Sentiment API", description="Get company news summaries with sentiment analysis")
|
26 |
|
27 |
+
llm=ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-8b-instant")
|
28 |
|
29 |
+
JSON_FILE_PATH = "final_summary.json"
|
30 |
+
AUDIO_FILE_PATH = "hindi_summary.mp3"
|
31 |
|
32 |
+
def get_tts_client(): # Function to create a Text-to-Speech client
|
33 |
+
# Setting up Google Cloud credentials
|
34 |
+
credentials = Credentials.from_service_account_info({
|
35 |
"type": "service_account",
|
36 |
"private_key": PRIVATE_KEY,
|
37 |
"client_email": CLIENT_EMAIL,
|
38 |
"token_uri": "https://oauth2.googleapis.com/token"
|
39 |
})
|
40 |
+
return texttospeech.TextToSpeechClient(credentials=credentials)
|
41 |
+
|
42 |
+
# Creating main function to create final summarized report
|
43 |
+
def generate_summary(company_name):
|
44 |
+
news_articles = extract_titles_and_summaries(company_name)
|
45 |
+
news_articles, sentiment_counts = perform_sentiment_analysis(news_articles)
|
46 |
+
news_articles = extract_topics_with_hf(news_articles)
|
47 |
+
final_summary = compare_articles(news_articles, sentiment_counts)
|
48 |
+
hindi_text = ""
|
49 |
+
if PRIVATE_KEY and CLIENT_EMAIL:
|
50 |
+
hindi_prompt = f"Just Translate this text into Hindi: {final_summary['Final Sentiment Analysis']}" # Creating a prompt for Hindi translation
|
51 |
+
hindi_response = llm.invoke([HumanMessage(content=hindi_prompt)]).content
|
52 |
+
hindi_text = hindi_response.strip() if hindi_response else "Translation not available."
|
53 |
+
if hindi_text:
|
54 |
+
print(f"Generated Hindi Text: {hindi_text}")
|
55 |
else:
|
56 |
+
print("Hindi Text not generated")
|
57 |
|
58 |
try:
|
59 |
+
client = get_tts_client() # Getting the Text-to-Speech client
|
60 |
+
input_text = texttospeech.SynthesisInput(text=hindi_text) # Creating TTS input from Hindi text
|
61 |
+
voice = texttospeech.VoiceSelectionParams(
|
62 |
language_code="hi-IN",
|
63 |
name="hi-IN-Chirp3-HD-Kore"
|
64 |
)
|
65 |
+
audio_config = texttospeech.AudioConfig(audio_encoding=texttospeech.AudioEncoding.MP3) # Configuring MP3 audio output
|
66 |
+
response = client.synthesize_speech(input=input_text, voice=voice, audio_config=audio_config) # Synthesizing speech from text
|
67 |
+
with open(AUDIO_FILE_PATH, "wb") as out: # Writing the audio content to a file
|
68 |
out.write(response.audio_content)
|
69 |
+
print(f"Audio content written to file: {AUDIO_FILE_PATH}")
|
70 |
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error generating audio: {e}")
|
73 |
+
if not os.path.exists(AUDIO_FILE_PATH):
|
74 |
+
print(f"Audio file could not be found at {AUDIO_FILE_PATH}.")
|
75 |
|
76 |
+
final_summary["Audio"] = AUDIO_FILE_PATH
|
77 |
|
78 |
+
with open(JSON_FILE_PATH,"w",encoding="utf-8") as f:
|
79 |
+
json.dump(final_summary,f,ensure_ascii=False, indent=4)
|
80 |
+
|
81 |
+
# Returning a structured summary response
|
82 |
+
return {
|
83 |
'Company': final_summary["Company"],
|
84 |
'Articles': [
|
85 |
{
|
86 |
+
'Title': article.get('Title', 'No Title'),
|
87 |
+
'Summary': article.get('Summary', 'No Summary'),
|
88 |
+
'Sentiment': article.get('Sentiment', 'Unknown'),
|
89 |
+
'Score': article.get('Score', 0.0),
|
90 |
+
'Topics': article.get('Topics', [])
|
91 |
}
|
92 |
+
for article in final_summary["Articles"]
|
93 |
],
|
94 |
+
'Comparative Sentiment Score': { # Structuring sentiment analysis comparison
|
95 |
+
'Sentiment Distribution': sentiment_counts,
|
96 |
+
'Coverage Differences': final_summary["Comparative Sentiment Score"].get("Coverage Differences", []),
|
97 |
+
'Topic Overlap': {
|
98 |
'Common Topics': final_summary["Comparative Sentiment Score"].get("Topic Overlap", {}).get("Common Topics", []),
|
99 |
'Unique Topics': final_summary["Comparative Sentiment Score"].get("Topic Overlap", {}).get("Unique Topics", {})
|
100 |
}
|
101 |
},
|
102 |
+
'Final Sentiment Analysis': final_summary["Final Sentiment Analysis"],
|
103 |
+
'Audio': AUDIO_FILE_PATH
|
104 |
}
|
105 |
|
106 |
+
@app.get("/") # Defining a GET route for the home endpoint
|
107 |
def home():
|
108 |
+
return {"message": "Welcome to the Company Sentiment API"}
|
109 |
|
110 |
+
@app.post("/generateSummary") # Defining a POST route to generate a summary
|
111 |
+
def get_summary(company_name: str = Query(..., description="Enter company name")):
|
112 |
+
structured_summary = generate_summary(company_name)
|
113 |
+
return structured_summary
|
114 |
|
115 |
+
@app.get("/downloadJson") # Defining a GET route to download the JSON summary
|
116 |
def download_json():
|
117 |
+
return FileResponse(JSON_FILE_PATH, media_type="application/json", filename="final_summary.json")
|
118 |
|
119 |
+
@app.get("/downloadHindiAudio") # Defining a GET route to download Hindi audio
|
120 |
def download_audio():
|
121 |
+
return FileResponse(AUDIO_FILE_PATH, media_type="audio/mp3", filename="hindi_summary.mp3")
|
122 |
+
|
123 |
+
if __name__ == "__main__": # Main execution block for running the app
|
124 |
+
import uvicorn
|
125 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
126 |
+
|
127 |
|
|
|
|
|
|