import streamlit as st import pandas as pd import numpy as np import torch import nltk import os import tempfile import base64 from rank_bm25 import BM25Okapi from sentence_transformers import SentenceTransformer, CrossEncoder from nltk.tokenize import word_tokenize import pdfplumber import PyPDF2 from docx import Document import csv import gc from transformers import AutoModelForCausalLM, AutoTokenizer import time import faiss import re # Fix for older PyTorch versions that don't have get_default_device if not hasattr(torch, 'get_default_device'): def get_default_device(): if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') torch.get_default_device = get_default_device # Download NLTK resources try: nltk.data.find('tokenizers/punkt') except LookupError: nltk.download('punkt') # Set page configuration st.set_page_config( page_title="AI-driven Candidate Matcher", page_icon="๐ฏ", layout="wide", initial_sidebar_state="expanded" ) # Sidebar configuration with st.sidebar: st.title("โ๏ธ Configuration") # Advanced options st.subheader("Display Options") top_k = st.selectbox("Number of results to display", options=[1, 2, 3, 4, 5], index=4) # LLM Settings st.subheader("LLM Settings") st.info("๐ก Intent analysis using Qwen3-1.7B is always enabled") st.markdown("---") st.markdown("### ๐ค Pipeline Overview") st.markdown("**5-Stage Advanced Pipeline:**") st.markdown("1. FAISS Recall (Top 50)") st.markdown("2. Cross-Encoder Re-ranking (Top 20)") st.markdown("3. BM25 Keyword Matching") st.markdown("4. LLM Intent Analysis") st.markdown("5. Combined Scoring") st.markdown("### ๐ Scoring Formula") st.markdown("**Final Score = Cross-Encoder (0-0.7) + BM25 (0.1-0.2) + Intent (0-0.1)**") # Initialize session state if 'embedding_model' not in st.session_state: st.session_state.embedding_model = None if 'cross_encoder' not in st.session_state: st.session_state.cross_encoder = None if 'results' not in st.session_state: st.session_state.results = [] if 'resume_texts' not in st.session_state: st.session_state.resume_texts = [] if 'file_names' not in st.session_state: st.session_state.file_names = [] if 'current_job_description' not in st.session_state: st.session_state.current_job_description = "" if 'file_uploader_key' not in st.session_state: st.session_state.file_uploader_key = 0 if 'job_description_key' not in st.session_state: st.session_state.job_description_key = 1000 # No need for Qwen3-14B model since we're not generating explanations # Separate smaller model for intent analysis try: if 'qwen3_intent_tokenizer' not in st.session_state: st.session_state.qwen3_intent_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-1.7B") if 'qwen3_intent_model' not in st.session_state: st.session_state.qwen3_intent_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen3-1.7B", torch_dtype="auto", device_map="auto" ) except Exception as e: st.warning(f"โ ๏ธ Could not load Qwen3-1.7B: {str(e)}") st.session_state.qwen3_intent_tokenizer = None st.session_state.qwen3_intent_model = None @st.cache_resource def load_embedding_model(): """Load and cache the BGE embedding model""" try: with st.spinner("๐ Loading BAAI/bge-large-en-v1.5 model..."): # Try with explicit device specification device = 'cuda' if torch.cuda.is_available() else 'cpu' model = SentenceTransformer('BAAI/bge-large-en-v1.5', device=device) st.success("โ Embedding model loaded successfully!") return model except Exception as e: st.error(f"โ Error loading embedding model: {str(e)}") try: # Fallback: try with a smaller model st.warning("๐ Trying fallback model: all-MiniLM-L6-v2...") model = SentenceTransformer('all-MiniLM-L6-v2') st.success("โ Fallback embedding model loaded!") return model except Exception as e2: st.error(f"โ Fallback also failed: {str(e2)}") return None @st.cache_resource def load_cross_encoder(): """Load and cache the Cross-Encoder model""" try: with st.spinner("๐ Loading Cross-Encoder ms-marco-MiniLM-L6-v2..."): from sentence_transformers import CrossEncoder # Try with explicit device specification and logistic scoring device = 'cuda' if torch.cuda.is_available() else 'cpu' model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2', device=device) st.success("โ Cross-Encoder model loaded successfully!") return model except Exception as e: st.error(f"โ Error loading Cross-Encoder model: {str(e)}") try: # Fallback: try without device specification but with logistic scoring st.warning("๐ Trying Cross-Encoder without device specification...") model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2') st.success("โ Cross-Encoder model loaded (fallback)!") return model except Exception as e2: st.error(f"โ Cross-Encoder fallback also failed: {str(e2)}") return None def generate_qwen3_response(prompt, tokenizer, model, max_new_tokens=200): messages = [{"role": "user", "content": prompt}] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=max_new_tokens ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() response = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n") return response class ResumeScreener: def __init__(self): # Load models self.embedding_model = load_embedding_model() self.cross_encoder = load_cross_encoder() def extract_text_from_file(self, file_path, file_type): """Extract text from various file types""" try: if file_type == "pdf": with open(file_path, 'rb') as file: with pdfplumber.open(file) as pdf: text = "" for page in pdf.pages: text += page.extract_text() or "" if not text.strip(): # Fallback to PyPDF2 file.seek(0) reader = PyPDF2.PdfReader(file) text = "" for page in reader.pages: text += page.extract_text() or "" return text elif file_type == "docx": doc = Document(file_path) return " ".join([paragraph.text for paragraph in doc.paragraphs]) elif file_type == "txt": with open(file_path, 'r', encoding='utf-8') as file: return file.read() elif file_type == "csv": with open(file_path, 'r', encoding='utf-8') as file: csv_reader = csv.reader(file) return " ".join([" ".join(row) for row in csv_reader]) except Exception as e: st.error(f"Error extracting text from {file_path}: {str(e)}") return "" def get_embedding(self, text): """Generate embedding for text using BGE model""" if self.embedding_model is None: st.error("No embedding model loaded!") return np.zeros(1024) # BGE-large dimension try: # BGE models recommend adding instruction for retrieval # For queries (job description) if len(text) < 500: # Assuming shorter texts are queries text = "Represent this sentence for searching relevant passages: " + text # Truncate text to avoid memory issues text = text[:8192] if text else "" # Generate embedding embedding = self.embedding_model.encode(text, convert_to_numpy=True, normalize_embeddings=True) return embedding except Exception as e: st.error(f"Error generating embedding: {str(e)}") return np.zeros(1024) # BGE-large dimension def calculate_bm25_scores(self, resume_texts, job_description): """Calculate BM25 scores for keyword matching""" try: job_tokens = word_tokenize(job_description.lower()) corpus = [word_tokenize(text.lower()) for text in resume_texts if text and text.strip()] if not corpus: return [0.0] * len(resume_texts) bm25 = BM25Okapi(corpus) scores = bm25.get_scores(job_tokens) return scores.tolist() except Exception as e: st.error(f"Error calculating BM25 scores: {str(e)}") return [0.0] * len(resume_texts) def advanced_pipeline_ranking(self, resume_texts, job_description, final_top_k=5): """Advanced pipeline: FAISS recall -> Cross-encoder -> BM25 -> LLM intent -> Final ranking""" if not resume_texts: return [] # Stage 1: FAISS Recall (Top 50) st.write("๐ **Stage 1**: FAISS Recall - Finding top 50 candidates...") top_50_indices = self.faiss_recall(resume_texts, job_description, top_k=50) # Stage 2: Cross-Encoder Re-ranking (Top 20) st.write("๐ฏ **Stage 2**: Cross-Encoder Re-ranking - Selecting top 20...") top_20_results = self.cross_encoder_rerank(resume_texts, job_description, top_50_indices, top_k=20) # Stage 3: BM25 Keyword Matching st.write("๐ค **Stage 3**: BM25 Keyword Matching...") top_20_with_bm25 = self.add_bm25_scores(resume_texts, job_description, top_20_results) # Stage 4: LLM Intent Analysis (using Qwen3-1.7B) st.write("๐ค **Stage 4**: LLM Intent Analysis...") top_20_with_intent = self.add_intent_scores(resume_texts, job_description, top_20_with_bm25) # Stage 5: Final Combined Ranking st.write(f"๐ **Stage 5**: Final Combined Ranking - Selecting top {final_top_k}...") final_results = self.calculate_final_scores(top_20_with_intent) return final_results[:final_top_k] # Return top K as selected by user def faiss_recall(self, resume_texts, job_description, top_k=50): """Stage 1: Use FAISS for initial recall to find top 50 resumes""" try: # Get job embedding job_embedding = self.get_embedding(job_description) st.write(f"๐ Generating embeddings for {len(resume_texts)} resumes...") # Get resume embeddings resume_embeddings = [] progress_bar = st.progress(0) for i, text in enumerate(resume_texts): if text: embedding = self.embedding_model.encode(text[:8192], convert_to_numpy=True, normalize_embeddings=True) resume_embeddings.append(embedding) else: resume_embeddings.append(np.zeros(1024)) progress_bar.progress((i + 1) / len(resume_texts)) progress_bar.empty() st.write("๐ Building FAISS index and searching...") # Create FAISS index resume_embeddings = np.array(resume_embeddings).astype('float32') dimension = resume_embeddings.shape[1] index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity index.add(resume_embeddings) # Search for top K job_embedding = job_embedding.reshape(1, -1).astype('float32') scores, indices = index.search(job_embedding, min(top_k, len(resume_texts))) # Show completion message st.write(f"โ FAISS recall completed! Found top {min(top_k, len(resume_texts))} candidates.") return indices[0].tolist() except Exception as e: st.error(f"Error in FAISS recall: {str(e)}") # Fallback: return all indices return list(range(min(top_k, len(resume_texts)))) def cross_encoder_rerank(self, resume_texts, job_description, top_50_indices, top_k=20): """Stage 2: Use Cross-Encoder to re-rank top 50 and select top 20""" try: if not self.cross_encoder: st.error("Cross-encoder not loaded!") return [(idx, 0.0) for idx in top_50_indices[:top_k]] st.write(f"๐ Processing {len(top_50_indices)} candidates with Cross-Encoder...") # Prepare pairs for cross-encoder pairs = [] valid_indices = [] for idx in top_50_indices: if idx < len(resume_texts) and resume_texts[idx]: # Truncate texts for cross-encoder job_snippet = job_description[:512] resume_snippet = resume_texts[idx][:512] pairs.append([job_snippet, resume_snippet]) valid_indices.append(idx) if not pairs: st.warning("No valid pairs found for cross-encoder!") return [(idx, 0.0) for idx in top_50_indices[:top_k]] st.write(f"๐ Cross-Encoder analyzing {len(pairs)} resume-job pairs...") # Get cross-encoder scores progress_bar = st.progress(0) scores = [] def safe_sigmoid(x): """Safe sigmoid function that handles overflow""" if x >= 0: exp_neg_x = np.exp(-x) return 1 / (1 + exp_neg_x) else: exp_x = np.exp(x) return exp_x / (1 + exp_x) # Process in batches to avoid memory issues batch_size = 8 for i in range(0, len(pairs), batch_size): batch = pairs[i:i+batch_size] # Get raw logits from cross-encoder batch_scores = self.cross_encoder.predict(batch) # Apply sigmoid to convert logits to [0,1] range batch_scores_sigmoid = [safe_sigmoid(score) for score in batch_scores] scores.extend(batch_scores_sigmoid) progress_bar.progress(min(1.0, (i + batch_size) / len(pairs))) progress_bar.empty() # Combine indices with scores and sort indexed_scores = list(zip(valid_indices, scores)) indexed_scores.sort(key=lambda x: x[1], reverse=True) # Normalize scores to 0-0.7 range (highest score becomes 0.7) if scores and len(scores) > 0: max_score = max(scores) min_score = min(scores) if max_score > min_score: # Scale to 0-0.7 range normalized_indexed_scores = [] for idx, score in indexed_scores: normalized_score = 0.7 * (score - min_score) / (max_score - min_score) normalized_indexed_scores.append((idx, normalized_score)) indexed_scores = normalized_indexed_scores else: # All scores are the same, give them all 0.35 (middle value) indexed_scores = [(idx, 0.35) for idx, _ in indexed_scores] # Show completion message st.write(f"โ Cross-Encoder completed! Selected top {min(top_k, len(indexed_scores))} candidates.") st.write(f"๐ Cross-Encoder scores normalized to 0-0.7 range (highest: {indexed_scores[0][1]:.3f})") return indexed_scores[:top_k] except Exception as e: st.error(f"Error in cross-encoder re-ranking: {str(e)}") return [(idx, 0.0) for idx in top_50_indices[:top_k]] def add_bm25_scores(self, resume_texts, job_description, top_20_results): """Stage 3: Add BM25 scores to top 20 resumes""" try: st.write(f"๐ Calculating BM25 keyword scores for {len(top_20_results)} candidates...") # Get texts for top 20 top_20_texts = [resume_texts[idx] for idx, _ in top_20_results] # Calculate BM25 scores bm25_scores = self.calculate_bm25_scores(top_20_texts, job_description) # Normalize BM25 scores to 0.1-0.2 range if bm25_scores and max(bm25_scores) > 0: max_bm25 = max(bm25_scores) min_bm25 = min(bm25_scores) if max_bm25 > min_bm25: normalized_bm25 = [ 0.1 + 0.1 * (score - min_bm25) / (max_bm25 - min_bm25) for score in bm25_scores ] else: normalized_bm25 = [0.15] * len(bm25_scores) else: normalized_bm25 = [0.15] * len(top_20_results) # Combine with existing results results_with_bm25 = [] for i, (idx, cross_score) in enumerate(top_20_results): bm25_score = normalized_bm25[i] if i < len(normalized_bm25) else 0.15 results_with_bm25.append((idx, cross_score, bm25_score)) st.write(f"โ BM25 keyword matching completed!") return results_with_bm25 except Exception as e: st.error(f"Error adding BM25 scores: {str(e)}") return [(idx, cross_score, 0.15) for idx, cross_score in top_20_results] def add_intent_scores(self, resume_texts, job_description, top_20_with_bm25): """Stage 4: Add LLM intent analysis scores""" try: results_with_intent = [] progress_bar = st.progress(0) for i, (idx, cross_score, bm25_score) in enumerate(top_20_with_bm25): candidate_name = st.session_state.file_names[idx] if idx < len(st.session_state.file_names) else f"Resume_{idx}" intent_score, intent_text = self.analyze_intent(resume_texts[idx], job_description) # Print the intent analysis result st.write(f"๐ **{candidate_name}**: Intent = **{intent_text}** (Score: {intent_score:.1f})") results_with_intent.append((idx, cross_score, bm25_score, intent_score)) progress_bar.progress((i + 1) / len(top_20_with_bm25)) progress_bar.empty() return results_with_intent except Exception as e: st.error(f"Error adding intent scores: {str(e)}") return [(idx, cross_score, bm25_score, 0.1) for idx, cross_score, bm25_score in top_20_with_bm25] def analyze_intent(self, resume_text, job_description): """Analyze candidate's intent using LLM""" try: # Truncate texts resume_snippet = resume_text[:1500] if len(resume_text) > 1500 else resume_text job_snippet = job_description[:800] if len(job_description) > 800 else job_description prompt = f"""You are a helpful HR assistant. Look at this candidate's resume and job posting. The candidate is likely a good fit if they have ANY of these: - Related work experience (even if different industry) - Relevant technical skills - Educational background that could apply - Any transferable skills - Similar job titles or responsibilities Be generous in your assessment. Most candidates who made it this far are potentially suitable. Answer "Yes" for most candidates unless they are completely unrelated. Answer "No" only if absolutely no connection exists. Job Posting: {job_snippet} Candidate Resume: {resume_snippet} Is this candidate suitable? Answer:""" response = generate_qwen3_response( prompt, st.session_state.qwen3_intent_tokenizer, st.session_state.qwen3_intent_model, max_new_tokens=20 ) # Debug: print the raw response print(f"Raw LLM response: '{response}'") # Parse response - look for the answer directly response_lower = response.lower().strip() if 'yes' in response_lower: return 0.1, "Yes" elif 'no' in response_lower: return 0.0, "No" else: # If no clear answer, default to "Yes" to be more lenient print(f"Unclear response, defaulting to Yes: '{response}'") return 0.1, "Yes" except Exception as e: st.warning(f"Error analyzing intent: {str(e)}") return 0.1, "Yes" # Default to "Yes" instead of "Maybe" def calculate_final_scores(self, results_with_all_scores): """Stage 5: Calculate final combined scores""" try: st.write(f"๐ Computing final combined scores for {len(results_with_all_scores)} candidates...") final_results = [] for idx, cross_score, bm25_score, intent_score in results_with_all_scores: # Cross-encoder scores are already in [0,1] range with logistic scoring normalized_cross = cross_score # Final Score = Cross-Encoder (0-0.7) + BM25 (0.1-0.2) + Intent (0-0.1) final_score = normalized_cross + bm25_score + intent_score final_results.append({ 'index': idx, 'cross_encoder_score': normalized_cross, 'bm25_score': bm25_score, 'intent_score': intent_score, 'final_score': final_score }) # Sort by final score final_results.sort(key=lambda x: x['final_score'], reverse=True) st.write(f"โ Final ranking completed! Candidates sorted by combined score.") return final_results except Exception as e: st.error(f"Error calculating final scores: {str(e)}") return [] def generate_simple_explanation(self, score, semantic_score, bm25_score): """Generate simple explanation for the match (fallback)""" if score > 0.8: quality = "excellent" elif score > 0.6: quality = "strong" elif score > 0.4: quality = "moderate" else: quality = "limited" explanation = f"This candidate shows {quality} alignment with the position (score: {score:.2f}). " if semantic_score > bm25_score: explanation += f"The resume demonstrates strong conceptual relevance ({semantic_score:.2f}) suggesting good experience fit. " else: explanation += f"The resume has high keyword match ({bm25_score:.2f}) indicating direct skill alignment. " return explanation def create_download_link(df, filename="resume_screening_results.csv"): """Create download link for results""" csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() return f'๐ฅ Download Results CSV' # Main App Interface st.title("๐ฏ AI-driven Candidate Matcher") st.markdown("*Advanced 5-stage pipeline using BAAI/bge-large-en-v1.5 embeddings, Cross-Encoder re-ranking, and Qwen3-1.7B intent analysis*") # Privacy Statement with st.expander("๐ Privacy & Data Security", expanded=False): st.markdown(""" ### Data Privacy Statement **Your privacy is our top priority. We are committed to protecting the confidentiality of all resume data.** #### ๐ก๏ธ Data Handling - **No Permanent Storage**: Resume content is processed in memory only and never stored permanently - **Session-Based**: All data is automatically cleared when you close the browser or reset the application - **Local Processing**: All AI analysis happens locally within this application environment - **No External Transmission**: Resume data is never sent to external services or third parties #### ๐ Security Measures - **Temporary Files**: Uploaded files are processed in secure temporary locations and immediately deleted - **Memory Management**: Automatic cleanup of resume data from system memory - **No Logging**: Resume content is never logged or cached anywhere - **Secure Processing**: All text extraction and analysis occurs within isolated processing environments #### ๐ค User Control - **Clear Data Options**: Multiple options available to clear resume data and free memory - **Session Management**: Complete control over when and how your data is processed - **Transparent Processing**: Full visibility into what data is being analyzed **We recommend reviewing your organization's data handling policies before uploading sensitive resume information.** """) st.markdown("---") # Initialize screener screener = ResumeScreener() # Job Description Input st.header("๐ Step 1: Enter Job Description") job_description = st.text_area( "Enter the complete job description or requirements:", height=150, placeholder="Paste the job description here, including required skills, experience, and qualifications...", key=st.session_state.job_description_key ) # Resume Input Options st.header("๐ Step 2: Upload Resumes") # Show loaded resumes indicator if st.session_state.resume_texts: col1, col2 = st.columns([3, 1]) with col1: st.info(f"๐ {len(st.session_state.resume_texts)} resumes loaded and ready for analysis") with col2: if st.button("๐๏ธ Clear Resumes", type="secondary", help="Clear all loaded resumes to start fresh"): st.session_state.resume_texts = [] st.session_state.file_names = [] st.session_state.results = [] st.session_state.current_job_description = "" st.session_state.file_uploader_key += 1 st.session_state.job_description_key += 1 st.rerun() input_method = st.radio( "Choose input method:", ["๐ Upload Files", "๐๏ธ Load from CSV Dataset"] ) if input_method == "๐ Upload Files": uploaded_files = st.file_uploader( "Upload resume files", type=["pdf", "docx", "txt"], accept_multiple_files=True, help="Supported formats: PDF, DOCX, TXT", key=st.session_state.file_uploader_key ) if uploaded_files: with st.spinner(f"๐ Processing {len(uploaded_files)} files..."): resume_texts = [] file_names = [] for file in uploaded_files: file_type = file.name.split('.')[-1].lower() with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_type}') as tmp_file: tmp_file.write(file.getvalue()) tmp_path = tmp_file.name text = screener.extract_text_from_file(tmp_path, file_type) if text.strip(): resume_texts.append(text) file_names.append(file.name) os.unlink(tmp_path) st.session_state.resume_texts = resume_texts st.session_state.file_names = file_names if resume_texts: st.success(f"โ Successfully processed {len(resume_texts)} resumes") elif input_method == "๐๏ธ Load from CSV Dataset": csv_file = st.file_uploader("Upload CSV file with resume data", type=["csv"]) if csv_file: try: df = pd.read_csv(csv_file) st.write("**CSV Preview:**") st.dataframe(df.head()) text_column = st.selectbox( "Select column containing resume text:", df.columns.tolist() ) name_column = st.selectbox( "Select column for candidate names/IDs (optional):", ["Use Index"] + df.columns.tolist() ) if st.button("๐ Process CSV Data"): with st.spinner("๐ Processing CSV data..."): resume_texts = [] file_names = [] for idx, row in df.iterrows(): text = str(row[text_column]) if text and text.strip() and text.lower() != 'nan': resume_texts.append(text) if name_column == "Use Index": file_names.append(f"Resume_{idx}") else: file_names.append(str(row[name_column])) st.session_state.resume_texts = resume_texts st.session_state.file_names = file_names if resume_texts: st.success(f"โ Successfully loaded {len(resume_texts)} resumes from CSV") except Exception as e: st.error(f"โ Error processing CSV: {str(e)}") # Processing and Results st.header("๐ Step 3: Analyze Resumes") # Run Advanced Pipeline Analysis if st.button("๐ Advanced Pipeline Analysis", disabled=not (job_description and st.session_state.resume_texts), type="primary", help="Run the complete 5-stage advanced pipeline"): if len(st.session_state.resume_texts) == 0: st.error("โ Please upload resumes first!") elif not job_description.strip(): st.error("โ Please enter a job description!") else: with st.spinner("๐ Running Advanced Pipeline Analysis..."): try: # Run the advanced pipeline pipeline_results = screener.advanced_pipeline_ranking( st.session_state.resume_texts, job_description, final_top_k=top_k ) # Prepare results for display results = [] for rank, result_data in enumerate(pipeline_results, 1): idx = result_data['index'] name = st.session_state.file_names[idx] text = st.session_state.resume_texts[idx] results.append({ 'rank': rank, 'name': name, 'final_score': result_data['final_score'], 'cross_encoder_score': result_data['cross_encoder_score'], 'bm25_score': result_data['bm25_score'], 'intent_score': result_data['intent_score'], 'skills': [], 'text': text, 'text_preview': text[:500] + "..." if len(text) > 500 else text, 'explanation': None # Will be filled with simple explanation }) # Add simple explanations for result in results: result['explanation'] = screener.generate_simple_explanation( result['final_score'], result['cross_encoder_score'], result['bm25_score'] ) # Store in session state st.session_state.results = results st.session_state.current_job_description = job_description st.success(f"๐ Advanced pipeline complete! Found top {len(st.session_state.results)} candidates.") except Exception as e: st.error(f"โ Error during analysis: {str(e)}") # Display Results if st.session_state.results: st.header("๐ Top Candidates") # Create tabs for different views tab1, tab2, tab3 = st.tabs(["๐ Summary", "๐ Detailed Analysis", "๐ Visualizations"]) with tab1: # Create summary dataframe with new scoring system summary_data = [] for result in st.session_state.results: # Map intent score to text intent_text = "Yes" if result['intent_score'] == 0.1 else "No" summary_data.append({ "Rank": result['rank'], "Candidate": result['name'], "Final Score": f"{result['final_score']:.2f}", "Cross-Encoder": f"{result['cross_encoder_score']:.2f}", "BM25": f"{result['bm25_score']:.2f}", "Intent": f"{intent_text} ({result['intent_score']:.1f})" }) summary_df = pd.DataFrame(summary_data) # Style the dataframe def color_scores(val): if isinstance(val, str) and any(char.isdigit() for char in val): try: # Extract numeric value numeric_val = float(''.join(c for c in val if c.isdigit() or c == '.')) if 'Final Score' in val or numeric_val >= 1.0: if numeric_val >= 1.2: return 'background-color: #d4edda' elif numeric_val >= 1.0: return 'background-color: #fff3cd' else: return 'background-color: #f8d7da' else: if numeric_val >= 0.7: return 'background-color: #d4edda' elif numeric_val >= 0.5: return 'background-color: #fff3cd' else: return 'background-color: #f8d7da' except: pass return '' styled_df = summary_df.style.applymap(color_scores, subset=['Final Score', 'Cross-Encoder', 'BM25']) st.dataframe(styled_df, use_container_width=True) # Download link detailed_data = [] for result in st.session_state.results: intent_text = "Yes" if result['intent_score'] == 0.1 else "No" detailed_data.append({ "Rank": result['rank'], "Candidate": result['name'], "Final_Score": result['final_score'], "Cross_Encoder_Score": result['cross_encoder_score'], "BM25_Score": result['bm25_score'], "Intent_Score": result['intent_score'], "Intent_Analysis": intent_text, "AI_Explanation": result['explanation'], "Resume_Preview": result['text_preview'] }) download_df = pd.DataFrame(detailed_data) st.markdown(create_download_link(download_df), unsafe_allow_html=True) with tab2: # Detailed results with new scoring breakdown for result in st.session_state.results: intent_text = "Yes" if result['intent_score'] == 0.1 else "No" with st.expander(f"#{result['rank']}: {result['name']} (Final Score: {result['final_score']:.2f})"): col1, col2 = st.columns([1, 2]) with col1: st.metric("๐ Final Score", f"{result['final_score']:.2f}") st.write("**๐ Score Breakdown:**") st.metric("๐ฏ Cross-Encoder", f"{result['cross_encoder_score']:.2f}", help="Semantic relevance (0-0.7)") st.metric("๐ค BM25 Keywords", f"{result['bm25_score']:.2f}", help="Keyword matching (0.1-0.2)") st.metric("๐ค Intent Analysis", f"{intent_text} ({result['intent_score']:.2f})", help="Job seeking likelihood (0-0.1)") with col2: st.write("**๐ก AI-Generated Match Analysis:**") st.info(result['explanation']) st.write("**๐ Resume Preview:**") st.text_area("", result['text_preview'], height=200, disabled=True, key=f"preview_{result['rank']}") with tab3: # Score visualization if len(st.session_state.results) > 1: # Bar chart st.subheader("Score Comparison") chart_data = pd.DataFrame({ 'Candidate': [r['name'][:20] + '...' if len(r['name']) > 20 else r['name'] for r in st.session_state.results], 'Final Score': [r['final_score'] for r in st.session_state.results], 'Cross-Encoder': [r['cross_encoder_score'] for r in st.session_state.results], 'BM25': [r['bm25_score'] for r in st.session_state.results], 'Intent': [r['intent_score'] for r in st.session_state.results] }) st.bar_chart(chart_data.set_index('Candidate')) # Score distribution col1, col2 = st.columns(2) with col1: st.subheader("Score Distribution") score_ranges = { 'Excellent (โฅ1.2)': sum(1 for r in st.session_state.results if r['final_score'] >= 1.2), 'Good (1.0-1.2)': sum(1 for r in st.session_state.results if 1.0 <= r['final_score'] < 1.2), 'Fair (0.8-1.0)': sum(1 for r in st.session_state.results if 0.8 <= r['final_score'] < 1.0), 'Poor (<0.8)': sum(1 for r in st.session_state.results if r['final_score'] < 0.8), } dist_df = pd.DataFrame({ 'Range': score_ranges.keys(), 'Count': score_ranges.values() }) st.bar_chart(dist_df.set_index('Range')) with col2: st.subheader("Average Scores") avg_final = np.mean([r['final_score'] for r in st.session_state.results]) avg_cross = np.mean([r['cross_encoder_score'] for r in st.session_state.results]) avg_bm25 = np.mean([r['bm25_score'] for r in st.session_state.results]) avg_intent = np.mean([r['intent_score'] for r in st.session_state.results]) st.metric("Average Final Score", f"{avg_final:.2f}") st.metric("Average Cross-Encoder", f"{avg_cross:.2f}") st.metric("Average BM25", f"{avg_bm25:.2f}") st.metric("Average Intent", f"{avg_intent:.2f}") # Memory cleanup st.markdown("---") st.subheader("๐งน Reset Application") col1, col2, col3 = st.columns([1, 1, 3]) with col1: if st.button("๐๏ธ Clear Resumes Only", type="secondary", help="Clear only the loaded resumes"): st.session_state.resume_texts = [] st.session_state.file_names = [] st.session_state.results = [] st.session_state.current_job_description = "" st.session_state.file_uploader_key += 1 st.session_state.job_description_key += 1 st.success("โ Resumes cleared!") st.rerun() with col2: if st.button("๐งน Clear Everything", type="primary", help="Clear all data and free memory"): st.session_state.resume_texts = [] st.session_state.file_names = [] st.session_state.results = [] st.session_state.current_job_description = "" if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() st.session_state.file_uploader_key += 1 st.session_state.job_description_key += 1 st.success("โ Everything cleared!") st.rerun() # Footer st.markdown("---") st.markdown( """