root
ss
654f7e8
raw
history blame
43.8 kB
import streamlit as st
import pandas as pd
import numpy as np
import torch
import nltk
import os
import tempfile
import base64
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer, CrossEncoder
from nltk.tokenize import word_tokenize
import pdfplumber
import PyPDF2
from docx import Document
import csv
from datasets import load_dataset
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
import faiss
import re
# Download NLTK resources
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Set page configuration
st.set_page_config(
page_title="AI Resume Screener",
page_icon="🎯",
layout="wide",
initial_sidebar_state="expanded"
)
# Sidebar configuration
with st.sidebar:
st.title("βš™οΈ Configuration")
# Advanced options
st.subheader("Advanced Options")
top_k = st.selectbox("Number of results to display", [1,2,3,4,5], index=4)
# LLM Settings
st.subheader("LLM Settings")
use_llm_explanations = st.checkbox("Generate AI Explanations", value=True)
if use_llm_explanations:
hf_token = st.text_input("Hugging Face Token (optional)", type="password",
help="Enter your HF token for better rate limits")
st.markdown("---")
st.markdown("### πŸ€– Advanced Pipeline")
st.markdown("- **Stage 1**: FAISS Recall (Top 50)")
st.markdown("- **Stage 2**: Cross-Encoder Re-ranking (Top 20)")
st.markdown("- **Stage 3**: BM25 Keyword Matching")
st.markdown("- **Stage 4**: LLM Intent Analysis")
st.markdown("- **Final**: Combined Scoring (Top 5)")
st.markdown("### πŸ“Š Models Used")
st.markdown("- **Embedding**: BAAI/bge-large-en-v1.5")
st.markdown("- **Cross-Encoder**: ms-marco-MiniLM-L6-v2")
st.markdown("- **LLM**: Qwen/Qwen3-1.7B")
st.markdown("### πŸ“ˆ Scoring Formula")
st.markdown("**Final Score = Cross-Encoder (0-1) + BM25 (0.1-0.2) + Intent (0-0.3)**")
# Initialize session state
if 'embedding_model' not in st.session_state:
st.session_state.embedding_model = None
if 'cross_encoder' not in st.session_state:
st.session_state.cross_encoder = None
if 'results' not in st.session_state:
st.session_state.results = []
if 'resume_texts' not in st.session_state:
st.session_state.resume_texts = []
if 'file_names' not in st.session_state:
st.session_state.file_names = []
if 'current_job_description' not in st.session_state:
st.session_state.current_job_description = ""
if 'qwen3_1_7b_tokenizer' not in st.session_state:
print("[Init] Loading Qwen3-1.7B Tokenizer...")
st.session_state.qwen3_1_7b_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-1.7B")
print("[Init] Qwen3-1.7B Tokenizer Loaded.")
if 'qwen3_1_7b_model' not in st.session_state:
print("[Init] Loading Qwen3-1.7B Model...")
st.session_state.qwen3_1_7b_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-1.7B", torch_dtype="auto", device_map="auto"
)
print("[Init] Qwen3-1.7B Model Loaded.")
@st.cache_resource
def load_embedding_model():
"""Load and cache the BGE embedding model"""
print("[Cache] Attempting to load Embedding Model (BAAI/bge-large-en-v1.5)...")
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[Cache] Using device: {device} for embedding model")
with st.spinner("πŸ”„ Loading BAAI/bge-large-en-v1.5 model..."):
model = SentenceTransformer('BAAI/bge-large-en-v1.5', device=device)
st.success("βœ… Embedding model loaded successfully!")
print("[Cache] Embedding Model (BAAI/bge-large-en-v1.5) LOADED.")
return model
except Exception as e:
st.error(f"❌ Error loading embedding model: {str(e)}")
return None
@st.cache_resource
def load_cross_encoder():
"""Load and cache the Cross-Encoder model"""
print("[Cache] Attempting to load Cross-Encoder Model (ms-marco-MiniLM-L6-v2)...")
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[Cache] Using device: {device} for cross-encoder model")
with st.spinner("πŸ”„ Loading Cross-Encoder ms-marco-MiniLM-L6-v2..."):
from sentence_transformers import CrossEncoder
model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L6-v2', device=device)
st.success("βœ… Cross-Encoder model loaded successfully!")
print("[Cache] Cross-Encoder Model (ms-marco-MiniLM-L6-v2) LOADED.")
return model
except Exception as e:
st.error(f"❌ Error loading Cross-Encoder model: {str(e)}")
return None
def generate_qwen3_response(prompt, tokenizer, model, max_new_tokens=200):
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_new_tokens
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
response = tokenizer.decode(output_ids, skip_special_tokens=True).strip("\n")
return response
class ResumeScreener:
def __init__(self):
print("[ResumeScreener] Initializing...")
st.text("Initializing Screener: Loading embedding model...")
self.embedding_model = load_embedding_model()
st.text("Initializing Screener: Loading cross-encoder model...")
self.cross_encoder = load_cross_encoder()
print("[ResumeScreener] Initialized.")
st.text("Screener Ready.")
def extract_text_from_file(self, file_path, file_type):
"""Extract text from various file types"""
try:
if file_type == "pdf":
with open(file_path, 'rb') as file:
with pdfplumber.open(file) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text() or ""
if not text.strip():
# Fallback to PyPDF2
file.seek(0)
reader = PyPDF2.PdfReader(file)
text = ""
for page in reader.pages:
text += page.extract_text() or ""
return text
elif file_type == "docx":
doc = Document(file_path)
return " ".join([paragraph.text for paragraph in doc.paragraphs])
elif file_type == "txt":
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_type == "csv":
with open(file_path, 'r', encoding='utf-8') as file:
csv_reader = csv.reader(file)
return " ".join([" ".join(row) for row in csv_reader])
except Exception as e:
st.error(f"Error extracting text from {file_path}: {str(e)}")
return ""
def get_embedding(self, text):
"""Generate embedding for text using BGE model"""
if self.embedding_model is None:
st.error("No embedding model loaded!")
return np.zeros(1024) # BGE-large dimension
try:
# BGE models recommend adding instruction for retrieval
# For queries (job description)
if len(text) < 500: # Assuming shorter texts are queries
text = "Represent this sentence for searching relevant passages: " + text
# Truncate text to avoid memory issues
text = text[:8192] if text else ""
# Generate embedding
embedding = self.embedding_model.encode(text,
convert_to_numpy=True,
normalize_embeddings=True)
return embedding
except Exception as e:
st.error(f"Error generating embedding: {str(e)}")
return np.zeros(1024) # BGE-large dimension
def calculate_bm25_scores(self, resume_texts, job_description):
"""Calculate BM25 scores for keyword matching"""
try:
job_tokens = word_tokenize(job_description.lower())
corpus = [word_tokenize(text.lower()) for text in resume_texts if text and text.strip()]
if not corpus:
return [0.0] * len(resume_texts)
bm25 = BM25Okapi(corpus)
scores = bm25.get_scores(job_tokens)
return scores.tolist()
except Exception as e:
st.error(f"Error calculating BM25 scores: {str(e)}")
return [0.0] * len(resume_texts)
def advanced_pipeline_ranking(self, resume_texts, job_description):
"""Advanced pipeline: FAISS recall -> Cross-encoder -> BM25 -> LLM intent -> Final ranking"""
print("[Pipeline] Advanced Pipeline Ranking started.")
if not resume_texts:
return []
st.info("πŸ” Stage 1: FAISS Recall - Finding top candidates...")
print("[Pipeline] Calling faiss_recall.")
top_50_indices = self.faiss_recall(resume_texts, job_description, top_k=50)
print(f"[Pipeline] faiss_recall returned {len(top_50_indices)} indices.")
st.info("🎯 Stage 2: Cross-Encoder Re-ranking - Selecting top candidates...")
print("[Pipeline] Calling cross_encoder_rerank.")
top_20_results = self.cross_encoder_rerank(resume_texts, job_description, top_50_indices, top_k=20)
print(f"[Pipeline] cross_encoder_rerank returned {len(top_20_results)} results.")
st.info("πŸ”€ Stage 3: BM25 Keyword Matching...")
print("[Pipeline] Calling add_bm25_scores.")
top_20_with_bm25 = self.add_bm25_scores(resume_texts, job_description, top_20_results)
print(f"[Pipeline] add_bm25_scores processed.")
st.info("πŸ€– Stage 4: LLM Intent Analysis (Qwen3-1.7B)...")
print("[Pipeline] Calling add_intent_scores.")
top_20_with_intent = self.add_intent_scores(resume_texts, job_description, top_20_with_bm25)
print(f"[Pipeline] add_intent_scores processed.")
st.info("πŸ† Stage 5: Final Combined Ranking...")
print("[Pipeline] Calling calculate_final_scores.")
final_results = self.calculate_final_scores(top_20_with_intent)
print(f"[Pipeline] calculate_final_scores returned {len(final_results)} results.")
print("[Pipeline] Advanced Pipeline Ranking finished.")
return final_results[:5] # Return top 5
def faiss_recall(self, resume_texts, job_description, top_k=50):
"""Stage 1: Use FAISS for initial recall to find top 50 resumes"""
print("[faiss_recall] Method started.")
st.text("FAISS Recall: Embedding job description...")
job_embedding = self.get_embedding(job_description)
print("[faiss_recall] Job description embedded.")
st.text(f"FAISS Recall: Embedding {len(resume_texts)} resumes...")
resume_embeddings = []
progress_bar = st.progress(0)
for i, text in enumerate(resume_texts):
if text:
embedding = self.embedding_model.encode(text[:8192],
convert_to_numpy=True,
normalize_embeddings=True)
resume_embeddings.append(embedding)
else:
resume_embeddings.append(np.zeros(1024))
progress_bar.progress((i + 1) / len(resume_texts))
if i % 10 == 0: # Print progress every 10 resumes
print(f"[faiss_recall] Embedded resume {i+1}/{len(resume_texts)}")
progress_bar.empty()
print("[faiss_recall] All resumes embedded.")
st.text("FAISS Recall: Building FAISS index...")
resume_embeddings = np.array(resume_embeddings).astype('float32')
dimension = resume_embeddings.shape[1]
index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
index.add(resume_embeddings)
print("[faiss_recall] FAISS index built.")
st.text("FAISS Recall: Searching index...")
job_embedding = job_embedding.reshape(1, -1).astype('float32')
scores, indices = index.search(job_embedding, min(top_k, len(resume_texts)))
print("[faiss_recall] FAISS search complete.")
return indices[0].tolist()
def cross_encoder_rerank(self, resume_texts, job_description, top_50_indices, top_k=20):
"""Stage 2: Use Cross-Encoder to re-rank top 50 and select top 20"""
print("[cross_encoder_rerank] Method started.")
try:
if not self.cross_encoder:
st.error("Cross-encoder not loaded!")
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
# Prepare pairs for cross-encoder
pairs = []
valid_indices = []
for idx in top_50_indices:
if idx < len(resume_texts) and resume_texts[idx]:
# Truncate texts for cross-encoder
job_snippet = job_description[:512]
resume_snippet = resume_texts[idx][:512]
pairs.append([job_snippet, resume_snippet])
valid_indices.append(idx)
if not pairs:
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
st.text(f"Cross-Encoder: Preparing {len(pairs)} pairs for re-ranking...")
print(f"[cross_encoder_rerank] Prepared {len(pairs)} pairs.")
# Get cross-encoder scores
progress_bar = st.progress(0)
scores = []
# Process in batches to avoid memory issues
batch_size = 8
for i in range(0, len(pairs), batch_size):
batch = pairs[i:i+batch_size]
batch_scores = self.cross_encoder.predict(batch)
scores.extend(batch_scores)
progress_bar.progress(min(1.0, (i + batch_size) / len(pairs)))
print(f"[cross_encoder_rerank] Processed batch {i//batch_size + 1}")
progress_bar.empty()
print("[cross_encoder_rerank] All pairs scored.")
st.text("Cross-Encoder: Re-ranking complete.")
# Combine indices with scores and sort
indexed_scores = list(zip(valid_indices, scores))
indexed_scores.sort(key=lambda x: x[1], reverse=True)
return indexed_scores[:top_k]
except Exception as e:
st.error(f"Error in cross-encoder re-ranking: {str(e)}")
return [(idx, 0.0) for idx in top_50_indices[:top_k]]
def add_bm25_scores(self, resume_texts, job_description, top_20_results):
"""Stage 3: Add BM25 scores to top 20 resumes"""
print("[add_bm25_scores] Method started.")
st.text("BM25: Calculating keyword scores...")
try:
# Get texts for top 20
top_20_texts = [resume_texts[idx] for idx, _ in top_20_results]
# Calculate BM25 scores
bm25_scores = self.calculate_bm25_scores(top_20_texts, job_description)
# Normalize BM25 scores to 0.1-0.2 range
if bm25_scores and max(bm25_scores) > 0:
max_bm25 = max(bm25_scores)
min_bm25 = min(bm25_scores)
if max_bm25 > min_bm25:
normalized_bm25 = [
0.1 + 0.1 * (score - min_bm25) / (max_bm25 - min_bm25)
for score in bm25_scores
]
else:
normalized_bm25 = [0.15] * len(bm25_scores)
else:
normalized_bm25 = [0.15] * len(top_20_results)
# Combine with existing results
results_with_bm25 = []
for i, (idx, cross_score) in enumerate(top_20_results):
bm25_score = normalized_bm25[i] if i < len(normalized_bm25) else 0.15
results_with_bm25.append((idx, cross_score, bm25_score))
print("[add_bm25_scores] BM25 scores calculated and normalized.")
st.text("BM25: Keyword scores added.")
return results_with_bm25
except Exception as e:
st.error(f"Error adding BM25 scores: {str(e)}")
return [(idx, cross_score, 0.15) for idx, cross_score in top_20_results]
def add_intent_scores(self, resume_texts, job_description, top_20_with_bm25):
"""Stage 4: Add LLM intent analysis scores"""
print("[add_intent_scores] Method started.")
st.text(f"LLM Intent: Analyzing intent for {len(top_20_with_bm25)} candidates (Qwen3-1.7B)...")
results_with_intent = []
progress_bar = st.progress(0)
for i, (idx, cross_score, bm25_score) in enumerate(top_20_with_bm25):
intent_score = self.analyze_intent(resume_texts[idx], job_description)
results_with_intent.append((idx, cross_score, bm25_score, intent_score))
progress_bar.progress((i + 1) / len(top_20_with_bm25))
print(f"[add_intent_scores] Intent analyzed for candidate {i+1}")
progress_bar.empty()
print("[add_intent_scores] All intents analyzed.")
st.text("LLM Intent: Analysis complete.")
return results_with_intent
def analyze_intent(self, resume_text, job_description):
"""Analyze candidate's intent using Qwen3-1.7B LLM with thinking enabled."""
print(f"[analyze_intent] Analyzing intent for one resume (Qwen3-1.7B)...")
st.text("LLM Intent: Analyzing intent (Qwen3-1.7B)...")
try:
resume_snippet = resume_text[:15000]
job_snippet = job_description[:5000]
prompt = f"""You are given a job description and a candidate's resume.\nAnalyze the candidate's resume in detail against the job description to determine if they are genuinely seeking this specific job, or if their profile is a more general fit or perhaps a mismatch.\nProvide a step-by-step thought process for your decision.\nFinally, clearly answer: \"Is the candidate likely seeking THIS SPECIFIC job? Respond with 'Yes', 'Maybe', or 'No' and give a brief justification based on your thought process.\"\n\nJob Description:\n{job_snippet}\n\nCandidate Resume:\n{resume_snippet}\n\nResponse format:\n<think>\n[Your detailed step-by-step thought process comparing resume to JD, noting specific alignments or mismatches that indicate intent. Be thorough.]\n</think>\nIntent: [Yes/Maybe/No]\nReason: [Brief justification based on your thought process]"""
response_text = generate_qwen3_response(
prompt,
st.session_state.qwen3_1_7b_tokenizer,
st.session_state.qwen3_1_7b_model,
max_new_tokens=20000
)
print(f"[analyze_intent] Qwen3-1.7B full response (first 100 chars): {response_text[:100]}...")
thinking_content = "No detailed thought process extracted."
intent_decision_part = response_text
think_start_tag = "<think>"
think_end_tag = "</think>"
start_index = response_text.find(think_start_tag)
end_index = response_text.rfind(think_end_tag)
if start_index != -1 and end_index != -1 and start_index < end_index:
thinking_content = response_text[start_index + len(think_start_tag):end_index].strip()
intent_decision_part = response_text[end_index + len(think_end_tag):].strip()
print(f"[analyze_intent] Thinking content extracted (first 50 chars): {thinking_content[:50]}...")
else:
print("[analyze_intent] <think> block not found or malformed in response.")
response_lower = intent_decision_part.lower()
intent_score = 0.1
if 'intent: yes' in response_lower or 'intent:yes' in response_lower:
intent_score = 0.3
elif 'intent: no' in response_lower or 'intent:no' in response_lower:
intent_score = 0.0
print(f"[analyze_intent] Parsed Intent: {intent_score}, Decision part: {intent_decision_part[:100]}...")
return intent_score
except Exception as e:
st.warning(f"Error analyzing intent with Qwen3-1.7B: {str(e)}")
print(f"[analyze_intent] EXCEPTION: {str(e)}")
return 0.1
def calculate_final_scores(self, results_with_all_scores):
"""Stage 5: Calculate final combined scores"""
print("[calculate_final_scores] Method started.")
st.text("Final Ranking: Calculating combined scores...")
try:
final_results = []
for idx, cross_score, bm25_score, intent_score in results_with_all_scores:
# Normalize cross-encoder score to 0-1 range
normalized_cross = max(0, min(1, cross_score))
# Final Score = Cross-Encoder (0-1) + BM25 (0.1-0.2) + Intent (0-0.3)
final_score = normalized_cross + bm25_score + intent_score
final_results.append({
'index': idx,
'cross_encoder_score': normalized_cross,
'bm25_score': bm25_score,
'intent_score': intent_score,
'final_score': final_score
})
# Sort by final score
final_results.sort(key=lambda x: x['final_score'], reverse=True)
print("[calculate_final_scores] Final scores calculated and sorted.")
st.text("Final Ranking: Complete.")
return final_results
except Exception as e:
st.error(f"Error calculating final scores: {str(e)}")
return []
def extract_skills(self, text, job_description):
"""Extract skills from resume based on job description"""
if not text:
return []
# Common tech skills
common_skills = [
"python", "java", "javascript", "react", "angular", "vue", "node.js",
"express", "django", "flask", "spring", "sql", "nosql", "html", "css",
"aws", "azure", "gcp", "docker", "kubernetes", "jenkins", "git", "github",
"agile", "scrum", "jira", "ci/cd", "devops", "microservices", "rest", "api",
"machine learning", "deep learning", "data science", "artificial intelligence",
"tensorflow", "pytorch", "keras", "scikit-learn", "pandas", "numpy",
"matplotlib", "seaborn", "jupyter", "r", "sas", "spss", "tableau", "powerbi",
"excel", "mysql", "postgresql", "mongodb", "redis", "elasticsearch",
"kafka", "rabbitmq", "spark", "hadoop", "hive", "airflow", "linux", "unix"
]
# Extract potential skills from job description
job_words = set(word.lower() for word in word_tokenize(job_description) if len(word) > 2)
# Find matching skills
found_skills = []
text_lower = text.lower()
# Check common skills that appear in both resume and job description
for skill in common_skills:
if skill in text_lower and any(skill in job_word for job_word in job_words):
found_skills.append(skill)
# Check for skills mentioned in job description
for word in job_words:
if len(word) > 3 and word in text_lower and word not in found_skills:
# Basic filter to avoid common words
if word not in ['with', 'have', 'that', 'this', 'from', 'what', 'when', 'where']:
found_skills.append(word)
return list(set(found_skills))[:15] # Return top 15 unique skills
def create_download_link(df, filename="resume_screening_results.csv"):
"""Create download link for results"""
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
return f'<a href="data:file/csv;base64,{b64}" download="{filename}" class="download-btn">πŸ“₯ Download Results CSV</a>'
# Main App Interface
st.title("🎯 AI-Powered Resume Screener")
st.markdown("*Find the perfect candidates using BAAI/bge-large-en-v1.5 embeddings and Qwen3-1.7B for intent analysis*")
st.markdown("---")
# Initialize screener
screener = ResumeScreener()
# Job Description Input
st.header("πŸ“ Step 1: Enter Job Description")
job_description = st.text_area(
"Enter the complete job description or requirements:",
height=150,
placeholder="Paste the job description here, including required skills, experience, and qualifications..."
)
# Resume Input Options
st.header("πŸ“„ Step 2: Upload Resumes")
# Show loaded resumes indicator
if st.session_state.resume_texts:
col1, col2 = st.columns([3, 1])
with col1:
st.info(f"πŸ“š {len(st.session_state.resume_texts)} resumes loaded and ready for analysis")
with col2:
if st.button("πŸ—‘οΈ Clear Resumes", type="secondary", help="Clear all loaded resumes to start fresh"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
st.rerun()
input_method = st.radio(
"Choose input method:",
["πŸ“ Upload Files", "πŸ—‚οΈ Load from CSV Dataset", "πŸ”— Load from Hugging Face Dataset"]
)
if input_method == "πŸ“ Upload Files":
uploaded_files = st.file_uploader(
"Upload resume files",
type=["pdf", "docx", "txt"],
accept_multiple_files=True,
help="Supported formats: PDF, DOCX, TXT"
)
if uploaded_files:
with st.spinner(f"πŸ”„ Processing {len(uploaded_files)} files..."):
resume_texts = []
file_names = []
for file in uploaded_files:
file_type = file.name.split('.')[-1].lower()
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{file_type}') as tmp_file:
tmp_file.write(file.getvalue())
tmp_path = tmp_file.name
text = screener.extract_text_from_file(tmp_path, file_type)
if text.strip():
resume_texts.append(text)
file_names.append(file.name)
os.unlink(tmp_path)
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"βœ… Successfully processed {len(resume_texts)} resumes")
elif input_method == "πŸ—‚οΈ Load from CSV Dataset":
csv_file = st.file_uploader("Upload CSV file with resume data", type=["csv"])
if csv_file:
try:
df = pd.read_csv(csv_file)
st.write("**CSV Preview:**")
st.dataframe(df.head())
text_column = st.selectbox(
"Select column containing resume text:",
df.columns.tolist()
)
name_column = st.selectbox(
"Select column for candidate names/IDs (optional):",
["Use Index"] + df.columns.tolist()
)
if st.button("πŸš€ Process CSV Data"):
with st.spinner("πŸ”„ Processing CSV data..."):
resume_texts = []
file_names = []
for idx, row in df.iterrows():
text = str(row[text_column])
if text and text.strip() and text.lower() != 'nan':
resume_texts.append(text)
if name_column == "Use Index":
file_names.append(f"Resume_{idx}")
else:
file_names.append(str(row[name_column]))
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"βœ… Successfully loaded {len(resume_texts)} resumes from CSV")
except Exception as e:
st.error(f"❌ Error processing CSV: {str(e)}")
elif input_method == "πŸ”— Load from Hugging Face Dataset":
st.markdown("**Popular Resume Datasets:**")
st.markdown("- `ahmedheakl/resume-atlas`")
st.markdown("- `InferenceFly/Resume-Dataset`")
col1, col2 = st.columns([2, 1])
with col1:
dataset_name = st.text_input(
"Dataset name:",
value="ahmedheakl/resume-atlas",
help="Enter Hugging Face dataset name"
)
with col2:
dataset_split = st.selectbox("Split:", ["train", "test", "validation"], index=0)
if st.button("πŸ”— Load from Hugging Face"):
try:
with st.spinner(f"πŸ”„ Loading {dataset_name}..."):
dataset = load_dataset(dataset_name, split=dataset_split)
st.success(f"βœ… Loaded dataset with {len(dataset)} entries")
st.write("**Dataset Preview:**")
preview_df = pd.DataFrame(dataset[:5])
st.dataframe(preview_df)
text_column = st.selectbox(
"Select column with resume text:",
dataset.column_names,
index=dataset.column_names.index('resume_text') if 'resume_text' in dataset.column_names else 0
)
category_column = None
if 'category' in dataset.column_names:
categories = list(set(dataset['category']))
category_column = st.selectbox(
"Filter by category (optional):",
["All"] + categories
)
max_samples = st.slider("Maximum samples to load:", 10, min(1000, len(dataset)), 100)
if st.button("πŸš€ Process Dataset"):
with st.spinner("πŸ”„ Processing dataset..."):
resume_texts = []
file_names = []
filtered_dataset = dataset
if category_column and category_column != "All":
filtered_dataset = dataset.filter(lambda x: x['category'] == category_column)
sample_indices = list(range(min(max_samples, len(filtered_dataset))))
for idx in sample_indices:
item = filtered_dataset[idx]
text = str(item[text_column])
if text and text.strip() and text.lower() != 'nan':
resume_texts.append(text)
if 'id' in item:
file_names.append(f"Resume_{item['id']}")
else:
file_names.append(f"Resume_{idx}")
st.session_state.resume_texts = resume_texts
st.session_state.file_names = file_names
if resume_texts:
st.success(f"βœ… Successfully loaded {len(resume_texts)} resumes")
except Exception as e:
st.error(f"❌ Error loading dataset: {str(e)}")
# Processing and Results
st.header("πŸ” Step 3: Analyze Resumes")
# First button: Find top K candidates (fast ranking)
col1, col2 = st.columns([1, 1])
with col1:
if st.button("πŸš€ Advanced Pipeline Analysis",
disabled=not (job_description and st.session_state.resume_texts),
type="primary",
help="Run the complete 5-stage advanced pipeline"):
print("--- Advanced Pipeline Analysis Button Clicked ---")
if len(st.session_state.resume_texts) == 0:
st.error("❌ Please upload resumes first!")
elif not job_description.strip():
st.error("❌ Please enter a job description!")
else:
print("[UI Button] Pre-checks passed. Starting spinner and pipeline.")
with st.spinner("πŸš€ Running Advanced Pipeline Analysis..."):
st.text("Pipeline Initiated: Starting advanced analysis...")
try:
# Run the advanced pipeline
pipeline_results = screener.advanced_pipeline_ranking(
st.session_state.resume_texts, job_description
)
# Prepare results for display
results = []
for rank, result_data in enumerate(pipeline_results, 1):
idx = result_data['index']
name = st.session_state.file_names[idx]
text = st.session_state.resume_texts[idx]
# Extract skills
skills = screener.extract_skills(text, job_description)
results.append({
'rank': rank,
'name': name,
'final_score': result_data['final_score'],
'cross_encoder_score': result_data['cross_encoder_score'],
'bm25_score': result_data['bm25_score'],
'intent_score': result_data['intent_score'],
'skills': skills,
'text': text,
'text_preview': text[:500] + "..." if len(text) > 500 else text
})
# Store in session state
st.session_state.results = results
st.session_state.current_job_description = job_description
st.success(f"πŸš€ Advanced pipeline complete! Found top {len(st.session_state.results)} candidates.")
st.text("Displaying Top Candidates...")
except Exception as e:
st.error(f"❌ Error during analysis: {str(e)}")
# Display Results
if st.session_state.results:
st.header("πŸ† Top Candidates")
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["πŸ“Š Summary", "πŸ“‹ Detailed Analysis", "πŸ“ˆ Visualizations"])
with tab1:
# Create summary dataframe with new scoring system
summary_data = []
for result in st.session_state.results:
# Map intent score to text
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
summary_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final Score": f"{result['final_score']:.2f}",
"Cross-Encoder": f"{result['cross_encoder_score']:.2f}",
"BM25": f"{result['bm25_score']:.2f}",
"Intent": f"{intent_text} ({result['intent_score']:.1f})",
"Top Skills": ", ".join(result['skills'][:5])
})
summary_df = pd.DataFrame(summary_data)
# Style the dataframe
def color_scores(val):
if isinstance(val, str) and any(char.isdigit() for char in val):
try:
# Extract numeric value
numeric_val = float(''.join(c for c in val if c.isdigit() or c == '.'))
if 'Final Score' in val or numeric_val >= 1.0:
if numeric_val >= 1.2:
return 'background-color: #d4edda'
elif numeric_val >= 1.0:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
else:
if numeric_val >= 0.7:
return 'background-color: #d4edda'
elif numeric_val >= 0.5:
return 'background-color: #fff3cd'
else:
return 'background-color: #f8d7da'
except:
pass
return ''
styled_df = summary_df.style.applymap(color_scores, subset=['Final Score', 'Cross-Encoder', 'BM25'])
st.dataframe(styled_df, use_container_width=True)
# Download link
detailed_data = []
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
detailed_data.append({
"Rank": result['rank'],
"Candidate": result['name'],
"Final_Score": result['final_score'],
"Cross_Encoder_Score": result['cross_encoder_score'],
"BM25_Score": result['bm25_score'],
"Intent_Score": result['intent_score'],
"Intent_Analysis": intent_text,
"Skills": "; ".join(result['skills']),
"Resume_Preview": result['text_preview']
})
download_df = pd.DataFrame(detailed_data)
st.markdown(create_download_link(download_df), unsafe_allow_html=True)
with tab2:
# Detailed results with new scoring breakdown
for result in st.session_state.results:
intent_text = "Yes" if result['intent_score'] == 0.3 else "Maybe" if result['intent_score'] == 0.1 else "No"
with st.expander(f"#{result['rank']}: {result['name']} (Final Score: {result['final_score']:.2f})"):
col1, col2 = st.columns([1, 2])
with col1:
st.metric("πŸ† Final Score", f"{result['final_score']:.2f}")
st.write("**πŸ“Š Score Breakdown:**")
st.metric("🎯 Cross-Encoder", f"{result['cross_encoder_score']:.2f}", help="Semantic relevance (0-1)")
st.metric("πŸ”€ BM25 Keywords", f"{result['bm25_score']:.2f}", help="Keyword matching (0.1-0.2)")
st.metric("πŸ€– Intent Analysis", f"{intent_text} ({result['intent_score']:.1f})", help="Job seeking likelihood (0-0.3)")
st.write("**🎯 Matching Skills:**")
skills_per_column = 5
skill_cols = st.columns(2)
for idx, skill in enumerate(result['skills'][:10]):
with skill_cols[idx % 2]:
st.write(f"β€’ {skill}")
with col2:
st.write("**πŸ“„ Resume Preview:**")
st.text_area("", result['text_preview'], height=200, disabled=True, key=f"preview_{result['rank']}")
with tab3:
# Score visualization
if len(st.session_state.results) > 1:
# Bar chart
st.subheader("Score Comparison")
chart_data = pd.DataFrame({
'Candidate': [r['name'][:20] + '...' if len(r['name']) > 20 else r['name']
for r in st.session_state.results],
'Final Score': [r['final_score'] for r in st.session_state.results],
'Cross-Encoder': [r['cross_encoder_score'] for r in st.session_state.results],
'BM25': [r['bm25_score'] for r in st.session_state.results],
'Intent': [r['intent_score'] for r in st.session_state.results]
})
st.bar_chart(chart_data.set_index('Candidate'))
# Score distribution
col1, col2 = st.columns(2)
with col1:
st.subheader("Score Distribution")
score_ranges = {
'Excellent (β‰₯1.2)': sum(1 for r in st.session_state.results if r['final_score'] >= 1.2),
'Good (1.0-1.2)': sum(1 for r in st.session_state.results if 1.0 <= r['final_score'] < 1.2),
'Fair (0.8-1.0)': sum(1 for r in st.session_state.results if 0.8 <= r['final_score'] < 1.0),
'Poor (<0.8)': sum(1 for r in st.session_state.results if r['final_score'] < 0.8),
}
dist_df = pd.DataFrame({
'Range': score_ranges.keys(),
'Count': score_ranges.values()
})
st.bar_chart(dist_df.set_index('Range'))
with col2:
st.subheader("Average Scores")
avg_final = np.mean([r['final_score'] for r in st.session_state.results])
avg_cross = np.mean([r['cross_encoder_score'] for r in st.session_state.results])
avg_bm25 = np.mean([r['bm25_score'] for r in st.session_state.results])
avg_intent = np.mean([r['intent_score'] for r in st.session_state.results])
st.metric("Average Final Score", f"{avg_final:.2f}")
st.metric("Average Cross-Encoder", f"{avg_cross:.2f}")
st.metric("Average BM25", f"{avg_bm25:.2f}")
st.metric("Average Intent", f"{avg_intent:.2f}")
# Memory cleanup
st.markdown("---")
st.subheader("🧹 Reset Application")
col1, col2, col3 = st.columns([1, 1, 3])
with col1:
if st.button("πŸ—‘οΈ Clear Resumes Only", type="secondary", help="Clear only the loaded resumes"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
st.success("βœ… Resumes cleared!")
st.rerun()
with col2:
if st.button("🧹 Clear Everything", type="primary", help="Clear all data and free memory"):
st.session_state.resume_texts = []
st.session_state.file_names = []
st.session_state.results = []
st.session_state.current_job_description = ""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
st.success("βœ… Everything cleared!")
st.rerun()
# Footer
st.markdown("---")
st.markdown(
"""
<div style='text-align: center; color: #666;'>
πŸš€ Powered by BAAI/bge-large-en-v1.5 & Qwen3-1.7B | Built with Streamlit
</div>
""",
unsafe_allow_html=True
)