File size: 44,018 Bytes
a928595 db455d9 9f115d1 c1efc08 e84a893 c1efc08 fbc936b c1efc08 e84a893 c1efc08 a928595 7044586 c1efc08 7044586 fbc936b 7044586 fbc936b c1efc08 e84a893 7044586 e84a893 7044586 c1efc08 7044586 c1efc08 7044586 c1efc08 7044586 db455d9 7044586 c1efc08 7044586 c1efc08 7044586 c1efc08 e84a893 c1efc08 e84a893 c1efc08 e84a893 c1efc08 e84a893 c1efc08 e84a893 c1efc08 e84a893 c1efc08 e84a893 c1efc08 e84a893 c1efc08 e84a893 c1efc08 e84a893 7044586 c1efc08 7044586 c1efc08 7044586 5bae67b 7044586 c1efc08 7044586 c1efc08 5bae67b 7044586 c1efc08 7044586 c1efc08 7044586 c1efc08 7044586 c1efc08 7044586 c1efc08 7044586 c1efc08 e84a893 c1efc08 7044586 c1efc08 7044586 c1efc08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
import streamlit as st
import pdfplumber
import io
import spacy
import re
import pandas as pd
import matplotlib.pyplot as plt
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import subprocess
import sys
import torch
import nltk
from nltk.tokenize import word_tokenize
from datetime import datetime
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
from collections import defaultdict
# Fix for huggingface_hub import issue
try:
# For newer versions of huggingface_hub
from huggingface_hub import hf_hub_download
except ImportError:
try:
# For older versions of huggingface_hub
from huggingface_hub import cached_download as hf_hub_download
except ImportError:
st.error("Could not import required functions from huggingface_hub. Please check your installation.")
hf_hub_download = None
# Initialize NLTK
@st.cache_resource
def download_nltk_resources():
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
download_nltk_resources()
st.set_page_config(
page_title="Comprehensive Resume Screener & Skill Extractor",
page_icon="π",
layout="wide"
)
# Download spaCy model if not already downloaded
@st.cache_resource
def download_spacy_model():
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.check_call([sys.executable, "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
return nlp
# Load the NLP models
@st.cache_resource
def load_models():
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
nlp = download_spacy_model()
# Load sentence transformer for semantic matching
try:
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
except Exception as e:
st.error(f"Failed to load sentence transformer: {str(e)}")
sentence_model = None
return summarizer, nlp, sentence_model
# Initialize models
summarizer, nlp, sentence_model = load_models()
# Job descriptions and required skills
job_descriptions = {
"Software Engineer": {
"skills": ["python", "java", "javascript", "sql", "algorithms", "data structures",
"git", "cloud", "web development", "software development", "coding"],
"description": "Looking for software engineers with strong programming skills and experience in software development.",
"semantic_description": """
We're seeking a talented Software Engineer to design, develop, and maintain high-quality software solutions.
The ideal candidate has strong programming skills in languages like Python, Java, or JavaScript, and experience with
SQL databases. You should be proficient in algorithms, data structures, and version control systems like Git.
Experience with cloud platforms and web development frameworks is a plus. You'll be responsible for the full
software development lifecycle, from requirements gathering to deployment and maintenance.
"""
},
"Interaction Designer": {
"skills": ["ui", "ux", "user research", "wireframing", "prototyping", "figma",
"sketch", "adobe", "design thinking", "interaction design"],
"description": "Seeking interaction designers with expertise in user experience and interface design.",
"semantic_description": """
We're looking for a creative Interaction Designer to craft intuitive and engaging user experiences.
You should have expertise in UI/UX design principles and methods, with a portfolio demonstrating your
ability to conduct user research, create wireframes, and develop interactive prototypes. Proficiency
with design tools like Figma, Sketch, and Adobe Creative Suite is required. You'll collaborate with
product managers and developers to iterate on designs based on user feedback and business requirements.
"""
},
"Data Scientist": {
"skills": ["python", "r", "statistics", "machine learning", "data analysis",
"sql", "tensorflow", "pytorch", "pandas", "numpy"],
"description": "Looking for data scientists with strong analytical and machine learning skills.",
"semantic_description": """
We're seeking a skilled Data Scientist to extract insights from complex datasets and build predictive models.
The ideal candidate has strong programming skills in Python or R, expertise in statistical analysis, and
experience with machine learning algorithms. You should be proficient in SQL for data extraction and tools
like TensorFlow or PyTorch for deep learning. Experience with data manipulation libraries like Pandas and NumPy
is essential. You'll work on projects from exploratory data analysis to model deployment, collaborating with
stakeholders to solve business problems through data-driven approaches.
"""
}
}
def extract_text_from_pdf(pdf_file):
text = ""
with pdfplumber.open(pdf_file) as pdf:
for page in pdf.pages:
text += page.extract_text() or ""
return text
def extract_work_experience(text):
"""Extract work experience details including company names, job titles, and dates"""
# Find common section headers for work experience
work_exp_patterns = [
r"(?i)WORK EXPERIENCE|PROFESSIONAL EXPERIENCE|EMPLOYMENT HISTORY|EXPERIENCE",
r"(?i)EDUCATION|ACADEMIC|QUALIFICATIONS"
]
# Find the start of work experience section
work_exp_start = None
for pattern in work_exp_patterns[:1]: # Use only the work experience patterns
match = re.search(pattern, text)
if match:
work_exp_start = match.end()
break
if work_exp_start is None:
return []
# Find the end of work experience section (start of education or next major section)
work_exp_end = len(text)
for pattern in work_exp_patterns[1:]: # Use only the education pattern
match = re.search(pattern, text)
if match and match.start() > work_exp_start:
work_exp_end = match.start()
break
work_exp_text = text[work_exp_start:work_exp_end]
# Extract job entries
# Look for patterns of job titles, company names, and dates
job_entries = []
# Pattern for dates (MM/YYYY or Month YYYY)
date_pattern = r"(?i)(Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|Nov(?:ember)?|Dec(?:ember)?)[,\s]+\d{4}|\d{1,2}/\d{4}|\d{4}"
# Pattern for common job title indicators
job_title_pattern = r"(?i)(Senior|Lead|Principal|Junior|Associate)?\s*(Software Engineer|Developer|Designer|Analyst|Manager|Director|Consultant|Specialist|Coordinator|Administrator)"
# Split into paragraphs which often represent job entries
paragraphs = re.split(r'\n\s*\n', work_exp_text)
for paragraph in paragraphs:
# Skip short paragraphs that are likely not job entries
if len(paragraph.strip()) < 30:
continue
# Extract dates
dates = re.findall(date_pattern, paragraph)
start_date = dates[0] if dates else "Unknown"
end_date = dates[-1] if len(dates) > 1 else "Present"
# Extract job title
title_match = re.search(job_title_pattern, paragraph)
job_title = title_match.group(0) if title_match else "Unknown Position"
# Extract company name (typically near the job title or at the start of the paragraph)
lines = paragraph.split('\n')
company = lines[0].strip() if lines else "Unknown Company"
if job_title in company:
company = company.replace(job_title, "").strip()
# Clean company name
for date in dates:
company = company.replace(date, "").strip()
company = re.sub(r'[,\.\|\-]', ' ', company).strip()
job_entries.append({
"company": company,
"title": job_title,
"start_date": start_date,
"end_date": end_date,
"description": paragraph
})
return job_entries
def estimate_skill_proficiency(text, skill):
"""Estimate proficiency level for a skill"""
# Define proficiency indicators
basic_indicators = ["familiar with", "basic knowledge", "understanding of", "exposure to"]
intermediate_indicators = ["experience with", "proficient in", "worked with", "2-3 years", "2 years", "3 years"]
advanced_indicators = ["expert in", "advanced", "extensive experience", "lead", "architected", "designed", "5+ years", "4+ years"]
# Convert to lowercase for matching
text_lower = text.lower()
# Find skill mentions and surrounding context
skill_lower = skill.lower()
skill_index = text_lower.find(skill_lower)
if skill_index == -1:
return None
# Extract context (100 characters before and after the skill mention)
start = max(0, skill_index - 100)
end = min(len(text_lower), skill_index + len(skill_lower) + 100)
context = text_lower[start:end]
# Check for proficiency indicators
for indicator in advanced_indicators:
if indicator in context:
return "Advanced"
for indicator in intermediate_indicators:
if indicator in context:
return "Intermediate"
for indicator in basic_indicators:
if indicator in context:
return "Basic"
# Default to basic if skill is mentioned but no proficiency indicators are found
return "Basic"
def calculate_seniority_score(job_entries):
"""Calculate a seniority score based on job titles and years of experience"""
# Define seniority levels for common job titles
seniority_levels = {
"intern": 1,
"junior": 2,
"associate": 3,
"developer": 4,
"engineer": 4,
"designer": 4,
"analyst": 4,
"senior": 6,
"lead": 7,
"manager": 7,
"principal": 8,
"director": 9,
"vp": 10,
"cto": 10,
"cio": 10,
"ceo": 10
}
# Calculate total years of experience
total_years = 0
for job in job_entries:
# Parse start and end dates
try:
start_year = re.search(r'\d{4}', job["start_date"])
end_year = re.search(r'\d{4}', job["end_date"]) if job["end_date"] != "Present" else None
if start_year:
start_year = int(start_year.group(0))
end_year = int(end_year.group(0)) if end_year else datetime.now().year
years = end_year - start_year
if 0 <= years <= 30: # Sanity check
total_years += years
except Exception:
# Skip if there's an issue with date parsing
pass
# Calculate title-based seniority
highest_seniority = 0
for job in job_entries:
title_lower = job["title"].lower()
for level_title, score in seniority_levels.items():
if level_title in title_lower and score > highest_seniority:
highest_seniority = score
# Combine years of experience and title-based seniority
# Years of experience factor: 0-2 years (1), 3-5 years (2), 6-10 years (3), 11+ years (4)
years_factor = 1
if total_years >= 3:
years_factor = 2
if total_years >= 6:
years_factor = 3
if total_years >= 11:
years_factor = 4
# Final seniority score (1-10 scale)
seniority_score = min(10, max(1, (highest_seniority * 0.6) + (years_factor * 1.0)))
return round(seniority_score, 1), total_years
def detect_fraud_signals(text, job_entries):
"""Detect potential fraud signals in the resume"""
fraud_signals = []
# Check for impossible timelines (overlapping full-time roles)
if len(job_entries) >= 2:
for i in range(len(job_entries) - 1):
for j in range(i+1, len(job_entries)):
# Check if both jobs have date information
if (job_entries[i]["start_date"] != "Unknown" and
job_entries[i]["end_date"] != "Unknown" and
job_entries[j]["start_date"] != "Unknown" and
job_entries[j]["end_date"] != "Unknown"):
# Get years for comparison
i_start = re.search(r'\d{4}', job_entries[i]["start_date"])
i_end = re.search(r'\d{4}', job_entries[i]["end_date"]) if job_entries[i]["end_date"] != "Present" else None
j_start = re.search(r'\d{4}', job_entries[j]["start_date"])
j_end = re.search(r'\d{4}', job_entries[j]["end_date"]) if job_entries[j]["end_date"] != "Present" else None
# Convert to integers for comparison
if i_start and j_start:
i_start = int(i_start.group(0))
i_end = int(i_end.group(0)) if i_end else datetime.now().year
j_start = int(j_start.group(0))
j_end = int(j_end.group(0)) if j_end else datetime.now().year
# Check for significant overlap (more than 6 months)
if ((i_start <= j_start < i_end) or (j_start <= i_start < j_end)) and job_entries[i]["company"] != job_entries[j]["company"]:
overlap_years = min(i_end, j_end) - max(i_start, j_start)
if overlap_years > 0.5: # More than 6 months overlap
fraud_signals.append(f"Potential timeline inconsistency: Overlapping roles at {job_entries[i]['company']} and {job_entries[j]['company']} for {overlap_years:.1f} years")
# Check for suspicious keywords or phrases
suspicious_phrases = [
"self-employed",
"freelance",
"consultant",
"entrepreneur",
"founder",
"ceo of own company"
]
# Look for suspicious gap filling
for phrase in suspicious_phrases:
if phrase in text.lower():
# Not all of these are fraudulent, but they warrant verification
fraud_signals.append(f"Verification recommended: Contains '{phrase}' which may need additional verification")
# Check for unexplained gaps in employment history
if len(job_entries) >= 2:
for i in range(len(job_entries) - 1):
# Sort entries by start date
if "Unknown" not in job_entries[i]["end_date"] and "Unknown" not in job_entries[i+1]["start_date"]:
end_match = re.search(r'\d{4}', job_entries[i]["end_date"])
start_match = re.search(r'\d{4}', job_entries[i+1]["start_date"])
if end_match and start_match:
end_year = int(end_match.group(0))
start_year = int(start_match.group(0))
# If there's more than a 1-year gap
if start_year - end_year > 1:
fraud_signals.append(f"Employment gap: {end_year} to {start_year} ({start_year - end_year} years)")
return fraud_signals
def predict_career_trajectory(job_entries, current_skills):
"""Predict logical next roles based on career progression"""
# Career path mappings based on common progressions
career_paths = {
"software engineer": ["Senior Software Engineer", "Lead Developer", "Software Architect", "Engineering Manager", "CTO"],
"developer": ["Senior Developer", "Technical Lead", "Software Architect", "Development Manager", "CTO"],
"designer": ["Senior Designer", "Lead Designer", "Design Manager", "Creative Director", "VP of Design"],
"data scientist": ["Senior Data Scientist", "Lead Data Scientist", "Data Science Manager", "Director of Analytics", "Chief Data Officer"]
}
# Extract current role from latest job entry
current_role = job_entries[0]["title"].lower() if job_entries else "unknown"
# Find the best matching career path
best_match = None
for role_key in career_paths:
if role_key in current_role:
best_match = role_key
break
if not best_match:
return ["Career path prediction requires more information"]
# Find current position in the career path
current_index = 0
for i, role in enumerate(career_paths[best_match]):
if any(indicator in current_role for indicator in ["senior", "lead", "manager", "director", "vp", "chief"]):
# If current role contains seniority indicators, advance the index
if "senior" in current_role and "senior" in role.lower():
current_index = i
break
elif "lead" in current_role and "lead" in role.lower():
current_index = i
break
elif "manager" in current_role and "manager" in role.lower():
current_index = i
break
elif "director" in current_role and "director" in role.lower():
current_index = i
break
# Get next potential roles (up to 3)
next_roles = []
for i in range(current_index + 1, min(current_index + 4, len(career_paths[best_match]))):
next_roles.append(career_paths[best_match][i])
if not next_roles:
next_roles = ["You're at a senior level in your career path. Consider lateral moves or industry specialization."]
return next_roles
def analyze_resume(text, job_title, sentence_model):
# Extract work experience
job_entries = extract_work_experience(text)
# Sort job entries by start date (most recent first)
job_entries.sort(key=lambda x: "9999" if x["start_date"] == "Unknown" else x["start_date"], reverse=True)
# Extract relevant skills with basic keyword matching
doc = nlp(text.lower())
found_skills = []
required_skills = job_descriptions[job_title]["skills"]
for skill in required_skills:
if skill in text.lower():
found_skills.append(skill)
# Determine skill proficiency levels
skill_proficiencies = {}
for skill in found_skills:
proficiency = estimate_skill_proficiency(text, skill)
if proficiency:
skill_proficiencies[skill] = proficiency
# Calculate seniority score
seniority_score, years_experience = calculate_seniority_score(job_entries)
# Detect fraud signals
fraud_signals = detect_fraud_signals(text, job_entries)
# Predict career trajectory
next_roles = predict_career_trajectory(job_entries, found_skills)
# Generate summary
chunks = [text[i:i + 1000] for i in range(0, len(text), 1000)]
summaries = []
for chunk in chunks[:3]: # Process first 3000 characters to avoid token limits
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
summaries.append(summary)
# Semantic matching with job description
semantic_score = 0
if sentence_model:
try:
resume_embedding = sentence_model.encode(text[:5000]) # Limit to first 5000 chars to avoid memory issues
job_embedding = sentence_model.encode(job_descriptions[job_title]["semantic_description"])
semantic_score = float(util.pytorch_cos_sim(resume_embedding, job_embedding)[0][0])
except Exception as e:
st.error(f"Error in semantic matching: {str(e)}")
return {
"found_skills": found_skills,
"skill_proficiencies": skill_proficiencies,
"summary": " ".join(summaries),
"job_entries": job_entries,
"seniority_score": seniority_score,
"years_experience": years_experience,
"fraud_signals": fraud_signals,
"next_roles": next_roles,
"semantic_score": semantic_score
}
def generate_career_advice(resume_text, job_title, found_skills, missing_skills):
"""
Generate career advice using a template-based approach instead of Qwen3-8B
to avoid dependency issues
"""
# Template-based advice generation
advice = f"""## Career Development Plan for {job_title} Position
### Skills to Develop
The following skills would strengthen your resume for this position:
"""
# Add advice for each missing skill
for skill in missing_skills:
if skill == "python":
advice += f"""#### Python
- **How to develop**: Take online courses focused on Python for {job_title.lower()} applications
- **Project idea**: Build a data analysis tool or web application using Python and popular frameworks
- **Resources**: Coursera's Python for Everybody, Python.org tutorials, Real Python website
"""
elif skill == "java":
advice += f"""#### Java
- **How to develop**: Complete a comprehensive Java course with practical exercises
- **Project idea**: Develop a backend service with Spring Boot
- **Resources**: Oracle's Java tutorials, Udemy courses on Java, "Effective Java" by Joshua Bloch
"""
elif skill == "javascript":
advice += f"""#### JavaScript
- **How to develop**: Practice with modern JavaScript frameworks
- **Project idea**: Create an interactive web application with React or Vue.js
- **Resources**: MDN Web Docs, freeCodeCamp, "Eloquent JavaScript" by Marijn Haverbeke
"""
elif skill == "sql":
advice += f"""#### SQL
- **How to develop**: Practice with database design and complex queries
- **Project idea**: Design a database system for a small business with reports and analytics
- **Resources**: SQLZoo, Mode Analytics SQL tutorial, W3Schools SQL course
"""
elif "algorithms" in skill or "data structures" in skill:
advice += f"""#### Algorithms & Data Structures
- **How to develop**: Solve coding problems regularly on platforms like LeetCode
- **Project idea**: Implement classic algorithms and optimize them for specific use cases
- **Resources**: "Cracking the Coding Interview" book, AlgoExpert, Coursera Algorithms specialization
"""
elif "git" in skill:
advice += f"""#### Git & Version Control
- **How to develop**: Contribute to open source projects to practice Git workflows
- **Project idea**: Set up a personal project with proper branching strategies and CI/CD
- **Resources**: Git documentation, GitHub Learning Lab, Atlassian Git tutorials
"""
elif "cloud" in skill:
advice += f"""#### Cloud Technologies
- **How to develop**: Get hands-on experience with a major cloud provider (AWS, Azure, GCP)
- **Project idea**: Deploy an application to the cloud with proper infrastructure as code
- **Resources**: Cloud provider documentation, A Cloud Guru courses, free tier accounts
"""
elif "ui" in skill or "ux" in skill:
advice += f"""#### UI/UX Design
- **How to develop**: Study design principles and practice creating user interfaces
- **Project idea**: Redesign an existing website or app with focus on user experience
- **Resources**: Nielsen Norman Group articles, Interaction Design Foundation, Figma tutorials
"""
elif "machine learning" in skill:
advice += f"""#### Machine Learning
- **How to develop**: Take courses on ML fundamentals and practice with datasets
- **Project idea**: Build a predictive model to solve a real-world problem
- **Resources**: Andrew Ng's Coursera courses, Kaggle competitions, "Hands-On Machine Learning" book
"""
elif "data analysis" in skill:
advice += f"""#### Data Analysis
- **How to develop**: Practice analyzing datasets and creating visualizations
- **Project idea**: Perform an exploratory data analysis on a public dataset
- **Resources**: DataCamp courses, Kaggle datasets, "Python for Data Analysis" by Wes McKinney
"""
else:
advice += f"""#### {skill.title()}
- **How to develop**: Research industry best practices and take relevant courses
- **Project idea**: Create a portfolio piece that showcases this skill
- **Resources**: Online courses, industry blogs, and practice projects
"""
# Add project recommendations based on job title
advice += f"""
### Recommended Projects for {job_title}
Based on the target position and the skills needed, here are some project ideas:
"""
if job_title == "Software Engineer":
advice += """
1. **Full-Stack Web Application**: Build a complete web app with frontend, backend, and database
2. **API Service**: Create a RESTful or GraphQL API with proper authentication and documentation
3. **Mobile Application**: Develop a cross-platform mobile app using React Native or Flutter
4. **Automation Tools**: Build scripts or applications that automate repetitive tasks
5. **Contribution to Open Source**: Find a project aligned with your skills and contribute meaningfully
"""
elif job_title == "Interaction Designer":
advice += """
1. **Design System**: Create a comprehensive design system with components and usage guidelines
2. **Website Redesign**: Redesign an existing website with focus on improved UX
3. **Mobile App Prototype**: Design a fully interactive mobile app prototype
4. **User Research Project**: Conduct user research and create a report with insights and recommendations
5. **Design Case Study**: Document your design process for solving a specific problem
"""
elif job_title == "Data Scientist":
advice += """
1. **Predictive Model**: Build a machine learning model that solves a real-world problem
2. **Data Visualization Dashboard**: Create an interactive dashboard to visualize complex data
3. **Natural Language Processing**: Develop a text analysis or sentiment analysis project
4. **Time Series Analysis**: Analyze time-based data and build forecasting models
5. **A/B Testing Framework**: Design and implement a framework for testing hypotheses
"""
# General advice for all positions
advice += """
### Learning Resources
- **Online Platforms**: Coursera, Udemy, Pluralsight, LinkedIn Learning
- **Documentation**: Official language and framework documentation
- **Communities**: Stack Overflow, GitHub, Reddit programming communities
- **Books**: O'Reilly publications specific to your target technologies
- **YouTube Channels**: Traversy Media, Tech With Tim, freeCodeCamp
### Positioning Your Experience
- Highlight transferable skills from your current experience
- Quantify achievements with metrics where possible
- Frame previous work in terms relevant to the target position
- Create a tailored resume that emphasizes relevant projects and responsibilities
"""
return advice
# Streamlit UI
st.title("π Comprehensive Resume Analyzer")
# Add description
st.markdown("""
This app helps recruiters and job seekers analyze resumes with advanced features:
- **Semantic Job Matching**: Uses AI to match resumes to job descriptions beyond keywords
- **Skill Proficiency Detection**: Identifies skill levels from context
- **Career Progression Analysis**: Visualizes job history and seniority
- **Fraud Detection**: Flags potential inconsistencies for verification
- **Career Path Prediction**: Suggests logical next roles based on experience
- **Personalized Development Advice**: Recommends skills, projects, and resources
""")
# Create two columns
col1, col2 = st.columns([2, 1])
with col1:
# File upload
uploaded_file = st.file_uploader("Upload Resume (PDF)", type=["pdf"])
with col2:
# Job selection
job_title = st.selectbox("Select Job Position", list(job_descriptions.keys()))
# Show job description
if job_title:
st.info(f"**Job Description:**\n{job_descriptions[job_title]['description']}\n\n**Required Skills:**\n" +
"\n".join([f"- {skill.title()}" for skill in job_descriptions[job_title]["skills"]]))
if uploaded_file and job_title:
try:
# Show spinner while processing
with st.spinner("Analyzing resume with advanced AI..."):
# Extract text from PDF
text = extract_text_from_pdf(uploaded_file)
# Analyze resume
analysis_results = analyze_resume(text, job_title, sentence_model)
# Calculate missing skills
missing_skills = [skill for skill in job_descriptions[job_title]["skills"]
if skill not in analysis_results["found_skills"]]
# Display results in tabs
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs([
"π Match Score",
"π― Skills Analysis",
"π¨βπΌ Experience",
"π Career Path",
"π© Verification",
"π Career Advice"
])
with tab1:
# Display match scores
st.subheader("π Job Match Analysis")
# Calculate match scores
keyword_match = len(analysis_results["found_skills"]) / len(job_descriptions[job_title]["skills"]) * 100
semantic_match = analysis_results["semantic_score"] * 100
# Display scores with gauges
col1, col2 = st.columns(2)
with col1:
# Keyword match gauge
fig = go.Figure(go.Indicator(
mode = "gauge+number",
value = keyword_match,
title = {'text': "Keyword Match"},
gauge = {
'axis': {'range': [0, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 30], 'color': "lightgray"},
{'range': [30, 70], 'color': "gray"},
{'range': [70, 100], 'color': "lightblue"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 70
}
}
))
st.plotly_chart(fig, use_container_width=True)
with col2:
# Semantic match gauge
fig = go.Figure(go.Indicator(
mode = "gauge+number",
value = semantic_match,
title = {'text': "Semantic Match"},
gauge = {
'axis': {'range': [0, 100]},
'bar': {'color': "darkgreen"},
'steps': [
{'range': [0, 30], 'color': "lightgray"},
{'range': [30, 70], 'color': "gray"},
{'range': [70, 100], 'color': "lightgreen"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 70
}
}
))
st.plotly_chart(fig, use_container_width=True)
# Calculate overall match score (weighted average)
overall_match = (keyword_match * 0.4) + (semantic_match * 0.6)
# Create overall score gauge
fig = go.Figure(go.Indicator(
mode = "gauge+number+delta",
value = overall_match,
title = {'text': "Overall Match Score"},
delta = {'reference': 75, 'increasing': {'color': "green"}},
gauge = {
'axis': {'range': [0, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 50], 'color': "lightgray"},
{'range': [50, 75], 'color': "gray"},
{'range': [75, 100], 'color': "darkblue"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 75
}
}
))
st.plotly_chart(fig, use_container_width=True)
# Display resume summary
st.subheader("π Resume Summary")
st.write(analysis_results["summary"])
with tab2:
# Display skills analysis
st.subheader("π― Skills Analysis")
# Create two columns
col1, col2 = st.columns(2)
with col1:
# Display matched skills with proficiency levels
st.subheader("π’ Skills Present")
# Create a DataFrame for the skills table
skills_data = []
for skill in analysis_results["found_skills"]:
proficiency = analysis_results["skill_proficiencies"].get(skill, "Basic")
skills_data.append({
"Skill": skill.title(),
"Proficiency": proficiency
})
if skills_data:
skills_df = pd.DataFrame(skills_data)
# Add proficiency color coding
def color_proficiency(val):
if val == "Advanced":
return 'background-color: #d4f7d4'
elif val == "Intermediate":
return 'background-color: #fff2cc'
else:
return 'background-color: #f2f2f2'
st.dataframe(skills_df.style.applymap(color_proficiency, subset=['Proficiency']),
use_container_width=True)
else:
st.warning("No direct skill matches found.")
with col2:
# Display missing skills
st.subheader("π΄ Skills to Develop")
if missing_skills:
missing_df = pd.DataFrame({"Skill": [skill.title() for skill in missing_skills]})
st.dataframe(missing_df, use_container_width=True)
else:
st.success("Great! The candidate has all the required skills!")
# Create a radar chart for skills coverage
st.subheader("Skills Coverage")
# Prepare data for radar chart
categories = job_descriptions[job_title]["skills"]
values = [1 if skill in analysis_results["found_skills"] else 0 for skill in categories]
# Create radar chart
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
fill='toself',
name='Present Skills'
))
fig.add_trace(go.Scatterpolar(
r=[1] * len(categories),
theta=categories,
fill='toself',
name='Required Skills',
opacity=0.3
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)),
showlegend=True
)
st.plotly_chart(fig, use_container_width=True)
with tab3:
# Display experience analysis
st.subheader("π¨βπΌ Experience Analysis")
# Display seniority metrics
col1, col2 = st.columns(2)
with col1:
# Seniority score gauge
fig = go.Figure(go.Indicator(
mode="gauge+number",
value=analysis_results["seniority_score"],
title={'text': "Seniority Score"},
gauge={
'axis': {'range': [0, 10]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 3], 'color': "lightgray"},
{'range': [3, 7], 'color': "gray"},
{'range': [7, 10], 'color': "lightblue"}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 7
}
}
))
st.plotly_chart(fig, use_container_width=True)
with col2:
# Years of experience
fig = go.Figure(go.Indicator(
mode="number+delta",
value=analysis_results["years_experience"],
number={'suffix': " years"},
title={"text": "Years of Experience"},
delta={'reference': 5, 'relative': False}
))
st.plotly_chart(fig, use_container_width=True)
# Display career progression timeline
st.subheader("Career Progression Timeline")
if analysis_results["job_entries"]:
# Create timeline data
timeline_data = []
for job in analysis_results["job_entries"]:
# Extract years for visualization
start_year = re.search(r'\d{4}', job["start_date"])
end_year = re.search(r'\d{4}', job["end_date"]) if job["end_date"] != "Present" else None
if start_year:
start_year = int(start_year.group(0))
end_year = int(end_year.group(0)) if end_year else datetime.now().year
timeline_data.append({
"Role": job["title"],
"Company": job["company"],
"Start": start_year,
"End": end_year,
"Duration": end_year - start_year
})
if timeline_data:
# Create DataFrame for timeline
timeline_df = pd.DataFrame(timeline_data)
# Sort by start date (ascending)
timeline_df = timeline_df.sort_values(by="Start")
# Create Gantt chart
fig = px.timeline(
timeline_df,
x_start="Start",
x_end="End",
y="Company",
color="Role",
hover_data=["Duration"],
labels={"Company": "Employer"}
)
fig.update_layout(
xaxis_title="Year",
yaxis_title="Employer",
title="Career Progression"
)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("Couldn't extract timeline data from the resume.")
else:
st.warning("No work experience entries found in the resume.")
with tab4:
# Display career path analysis
st.subheader("π Career Path Analysis")
# Display next role suggestions
st.subheader("Suggested Next Roles")
for i, role in enumerate(analysis_results["next_roles"]):
st.info(f"**Option {i+1}:** {role}")
# Add simple career progression visualization
st.subheader("Career Progression Path")
# Extract current role from latest job entry
current_role = analysis_results["job_entries"][0]["title"] if analysis_results["job_entries"] else "Current Position"
# Create nodes for career path
career_nodes = [current_role] + analysis_results["next_roles"]
# Create a simple digraph visualization
career_df = pd.DataFrame({
"From": [career_nodes[i] for i in range(len(career_nodes)-1)],
"To": [career_nodes[i+1] for i in range(len(career_nodes)-1)],
"Value": [10 for _ in range(len(career_nodes)-1)]
})
# Create a Sankey diagram
fig = go.Figure(data=[go.Sankey(
node=dict(
pad=15,
thickness=20,
line=dict(color="black", width=0.5),
label=career_nodes,
color="blue"
),
link=dict(
source=[i for i in range(len(career_nodes)-1)],
target=[i+1 for i in range(len(career_nodes)-1)],
value=[1 for _ in range(len(career_nodes)-1)]
)
)])
fig.update_layout(title_text="Potential Career Path", font_size=12)
st.plotly_chart(fig, use_container_width=True)
with tab5:
# Display fraud detection analysis
st.subheader("π© Verification Points")
if analysis_results["fraud_signals"]:
st.warning("The following points may require verification:")
for signal in analysis_results["fraud_signals"]:
st.markdown(f"- {signal}")
else:
st.success("No significant inconsistencies detected in the resume.")
# Add common verification tips
st.subheader("Recommended Verification Steps")
st.markdown("""
Even when no inconsistencies are detected, consider these verification steps:
1. **Reference Checks**: Contact previous employers to confirm employment dates and responsibilities
2. **Skills Assessment**: Use technical interviews or tests to verify claimed skills
3. **Education Verification**: Confirm degrees and certifications with educational institutions
4. **Portfolio Review**: Examine work samples or project contributions
5. **Online Presence**: Check LinkedIn, GitHub, or other professional profiles for consistency
""")
with tab6:
# Display career advice
st.subheader("π Career Advice and Development Plan")
if st.button("Generate Personalized Career Advice"):
with st.spinner("Generating detailed career advice and development plan..."):
advice = generate_career_advice(text, job_title, analysis_results["found_skills"], missing_skills)
st.markdown(advice)
except Exception as e:
st.error(f"An error occurred while processing the resume: {str(e)}")
st.exception(e)
# Add footer
st.markdown("---")
st.markdown("Made with β€οΈ using Streamlit, Hugging Face, and Advanced AI") |