import tiktoken def num_tokens_from_messages(messages, model="gpt-4o"): """ Returns the number of tokens used by a list of messages. Args: messages (list): A list of messages. model (str): The name of the model to use for tokenization. Returns: int: The number of tokens used by the messages. """ try: encoding = tiktoken.encoding_for_model(model) except KeyError: print("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") if model == "gpt-3.5-turbo": return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") elif model == "gpt-4o": return num_tokens_from_messages(messages, model="gpt-4-0314") elif model == "gpt-3.5-turbo-0301": tokens_per_message = ( 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n ) tokens_per_name = -1 # if there's a name, the role is omitted elif model == "gpt-4-0314": tokens_per_message = 3 tokens_per_name = 1 else: raise NotImplementedError( f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""" ) num_tokens = 0 for message in messages: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return num_tokens def num_tokens_from_text(text: str, model: str = "gpt-4o") -> int: """ Returns the number of tokens used by a text. Args: text (str): The text to tokenize. model (str): The name of the model to use for tokenization. """ try: encoding = tiktoken.encoding_for_model(model) except KeyError: print("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") num_tokens = 0 if text: num_tokens += len(encoding.encode(text)) return num_tokens