Spaces:
Sleeping
Sleeping
import tiktoken | |
def num_tokens_from_messages(messages, model="gpt-4o"): | |
""" | |
Returns the number of tokens used by a list of messages. | |
Args: | |
messages (list): A list of messages. | |
model (str): The name of the model to use for tokenization. | |
Returns: | |
int: The number of tokens used by the messages. | |
""" | |
try: | |
encoding = tiktoken.encoding_for_model(model) | |
except KeyError: | |
print("Warning: model not found. Using cl100k_base encoding.") | |
encoding = tiktoken.get_encoding("cl100k_base") | |
if model == "gpt-3.5-turbo": | |
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") | |
elif model == "gpt-4o": | |
return num_tokens_from_messages(messages, model="gpt-4-0314") | |
elif model == "gpt-3.5-turbo-0301": | |
tokens_per_message = ( | |
4 # every message follows <|start|>{role/name}\n{content}<|end|>\n | |
) | |
tokens_per_name = -1 # if there's a name, the role is omitted | |
elif model == "gpt-4-0314": | |
tokens_per_message = 3 | |
tokens_per_name = 1 | |
else: | |
raise NotImplementedError( | |
f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""" | |
) | |
num_tokens = 0 | |
for message in messages: | |
num_tokens += tokens_per_message | |
for key, value in message.items(): | |
num_tokens += len(encoding.encode(value)) | |
if key == "name": | |
num_tokens += tokens_per_name | |
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> | |
return num_tokens | |
def num_tokens_from_text(text: str, model: str = "gpt-4o") -> int: | |
""" | |
Returns the number of tokens used by a text. | |
Args: | |
text (str): The text to tokenize. | |
model (str): The name of the model to use for tokenization. | |
""" | |
try: | |
encoding = tiktoken.encoding_for_model(model) | |
except KeyError: | |
print("Warning: model not found. Using cl100k_base encoding.") | |
encoding = tiktoken.get_encoding("cl100k_base") | |
num_tokens = 0 | |
if text: | |
num_tokens += len(encoding.encode(text)) | |
return num_tokens | |