Spaces:
Sleeping
Sleeping
File size: 17,633 Bytes
79899c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
"""生物医学聊天服务模块,提供RAG问答和流式响应功能。"""
import datetime
import json
import time
from typing import Any, AsyncGenerator, List
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletionMessageParam
from bio_requests.chat_request import ChatRequest
from bio_requests.rag_request import RagRequest
from config.global_storage import get_model_config
from search_service.pubmed_search import PubMedSearchService
from search_service.web_search import WebSearchService
from service.query_rewrite import QueryRewriteService
from service.rerank import RerankService
from utils.bio_logger import bio_logger as logger
from utils.i18n_util import get_error_message, get_label_message
from utils.token_util import num_tokens_from_messages, num_tokens_from_text
from utils.snowflake_id import snowflake_id_str
class ChatService:
"""生物医学聊天服务,提供RAG问答和流式响应功能。"""
def __init__(self):
self.pubmed_search_service = PubMedSearchService()
self.web_search_service = WebSearchService()
self.query_rewrite_service = QueryRewriteService()
self.rag_request = RagRequest()
self.rerank_service = RerankService()
self.model_config = get_model_config()
def _initialize_rag_request(self, chat_request: ChatRequest) -> None:
"""初始化RAG请求参数"""
self.rag_request.query = chat_request.query
async def generate_stream(self, chat_request: ChatRequest):
"""
Generate a stream of messages for the chat request.
Args:
chat_request: 聊天请求
"""
start_time = time.time()
try:
# 初始化RAG请求
self._initialize_rag_request(chat_request)
# PubMed搜索
logger.info("QA-RAG: Start search pubmed...")
pubmed_results = await self._search_pubmed(chat_request)
pubmed_task_text = self._generate_pubmed_search_task_text(pubmed_results)
yield pubmed_task_text
logger.info(
f"QA-RAG: Finished search pubmed, length: {len(pubmed_results)}"
)
# Web搜索
web_results = []
logger.info("QA-RAG: Start search web...")
web_urls, task_text = await self._search_web()
logger.info("QA-RAG: Finished search web...")
web_results = (
await self.web_search_service.enrich_url_results_with_contents(web_urls)
)
yield task_text
# 创建消息
messages, citation_list = self._create_messages(
pubmed_results, web_results, chat_request
)
citation_text = self._generate_citation_text(citation_list)
yield citation_text
# 流式聊天完成
async for content in self._stream_chat_completion(messages):
yield content
logger.info(
f"Finished search and chat, query: [{chat_request.query}], total time: {time.time() - start_time:.2f}s"
)
except Exception as e:
logger.error(f"Error occurred: {e}")
# 使用上下文中的语言返回错误消息
error_msg = get_error_message("llm_service_error")
yield f"data: {error_msg}\n\n"
return
def _generate_citation_text(self, citation_list: List[Any]) -> str:
"""生成引用文本"""
return f"""
```bdd-resource-lookup
{json.dumps(citation_list)}
```
"""
async def _search_pubmed(self, chat_request: ChatRequest) -> List[Any]:
"""执行PubMed搜索"""
try:
logger.info(f"query: {chat_request.query}, Using pubmed search...")
self.rag_request.top_k = self.model_config["qa-topk"]["pubmed"]
self.rag_request.pubmed_topk = self.model_config["qa-topk"]["pubmed"]
start_search_time = time.time()
pubmed_results = await self.pubmed_search_service.search(self.rag_request)
end_search_time = time.time()
logger.info(
f"length of pubmed_results: {len(pubmed_results)},time used:{end_search_time - start_search_time:.2f}s"
)
pubmed_results = pubmed_results[0 : self.rag_request.top_k]
logger.info(f"length of pubmed_results after rerank: {len(pubmed_results)}")
end_rerank_time = time.time()
logger.info(
f"Reranked {len(pubmed_results)} results,time used:{end_rerank_time - end_search_time:.2f}s"
)
return pubmed_results
except Exception as e:
logger.error(f"error in search pubmed: {e}")
return []
async def _search_web(self) -> tuple[List[Any], str]:
"""执行Web搜索"""
web_topk = self.model_config["qa-topk"]["web"]
try:
# 尝试获取重写后的查询
query_list = await self.query_rewrite_service.query_split_for_web(
self.rag_request.query
)
# 安全获取重写查询,如果query_list为空或获取失败则使用原始查询
serper_query = (
query_list[0].get("query_item", "").strip() if query_list else None
)
# 如果重写查询为空,则回退到原始查询
if not serper_query:
serper_query = self.rag_request.query
# 使用最终确定的查询执行搜索
url_results = await self.web_search_service.search_serper(
query=serper_query, max_results=web_topk
)
except Exception as e:
logger.error(f"error in query rewrite web or serper retrieval: {e}")
# 出错时使用原始查询进行搜索
url_results = await self.web_search_service.search_serper(
query=self.rag_request.query, max_results=web_topk
)
# 生成任务文本
task_text = self._generate_web_search_task_text(url_results)
return url_results, task_text
def _generate_pubmed_search_task_text(self, pubmed_results: List[Any]) -> str:
"""生成PubMed搜索任务文本"""
docs = [
{
"docId": result.bio_id,
"url": result.url,
"title": result.title,
"description": result.text,
"author": result.authors,
"JournalInfo": result.journal.get("title", "")
+ "."
+ result.journal.get("year", "")
+ "."
+ (
result.journal.get("start_page", "")
+ "-"
+ result.journal.get("end_page", "")
+ "."
if result.journal.get("start_page")
and result.journal.get("end_page")
else ""
)
+ "doi:"
+ result.doi,
"PMID": result.source_id,
}
for result in pubmed_results
]
label = get_label_message("pubmed_search")
return self._generate_task_text(label, "pubmed", docs)
def _generate_web_search_task_text(self, url_results: List[Any]) -> str:
"""生成Web搜索任务文本"""
web_docs = [
{
"docId": snowflake_id_str(),
"url": url_result.url,
"title": url_result.title,
"description": url_result.description,
}
for url_result in url_results
]
logger.info(f"URL Results: {web_docs}")
label = get_label_message("web_search")
return self._generate_task_text(label, "webSearch", web_docs)
def _generate_task_text(self, label, source, bio_docs: List[Any]):
"""生成任务文本"""
task = {
"type": "search",
"label": label,
"hoverable": True,
"handler": "QASearch",
"status": "running",
"handlerParam": {"source": source, "bioDocs": bio_docs},
}
return f"""
```bdd-chat-agent-task
{json.dumps(task)}
```
"""
def _build_document_texts(
self, pubmed_results: List[Any], web_results: List[Any]
) -> tuple[str, str, List[Any]]:
"""构建文档文本"""
# 个人向量搜索结果
citation_list = []
temp_doc_list = []
# pubmed结果
pubmed_offset = 0
for idx, doc in enumerate(pubmed_results):
_idx = idx + 1 + pubmed_offset
temp_doc_list.append(
"[document {idx} begin] title: {title}. content: {abstract} [document {idx} end]".format(
idx=_idx, title=doc.title, abstract=doc.abstract
)
)
citation_list.append(
{"source": "pubmed", "docId": doc.bio_id, "citation": _idx}
)
pubmed_texts = "\n".join(temp_doc_list)
temp_doc_list = []
# 联网搜索结果
web_offset = pubmed_offset + len(pubmed_results)
for idx, doc in enumerate(web_results):
_idx = idx + 1 + web_offset
temp_doc_list.append(
"[document {idx} begin] title: {title}. content: {content} [document {idx} end]".format(
idx=_idx, title=doc.title, content=doc.text
)
)
citation_list.append(
{"source": "webSearch", "docId": doc.bio_id, "citation": _idx}
)
web_texts = "\n".join(temp_doc_list)
return pubmed_texts, web_texts, citation_list
def _truncate_documents_to_token_limit(
self,
pubmed_texts: str,
web_texts: str,
chat_request: ChatRequest,
) -> tuple[List[ChatCompletionMessageParam], int]:
"""截断文档以符合token限制"""
pubmed_list = pubmed_texts.split("\n")
web_list = web_texts.split("\n")
today = datetime.date.today()
openai_client_rag_prompt = self.model_config["chat"]["rag_prompt"]
max_tokens = self.model_config["qa-prompt-max-token"]["max_tokens"]
pubmed_token_limit = max_tokens
web_token_limit = 60000
personal_vector_token_limit = 80000
if chat_request.is_pubmed and chat_request.is_web:
personal_vector_token_limit = 40000
pubmed_token_limit = 20000
web_token_limit = 60000
elif chat_request.is_pubmed and not chat_request.is_web:
personal_vector_token_limit = 80000
pubmed_token_limit = 40000
web_token_limit = 0
elif chat_request.is_pubmed and chat_request.is_web:
personal_vector_token_limit = 0
pubmed_token_limit = 60000
web_token_limit = 60000
elif chat_request.is_pubmed and not chat_request.is_web:
personal_vector_token_limit = 0
pubmed_token_limit = 120000
web_token_limit = 0
def calculate_num_tokens(
pubmed_list: List[str], web_list: List[str]
) -> tuple[int, List[ChatCompletionMessageParam]]:
# 合并结果
docs_text = "\n".join(pubmed_list + web_list)
pt = (
openai_client_rag_prompt.replace("{search_results}", docs_text)
.replace("{cur_date}", str(today))
.replace("{question}", chat_request.query)
)
messages: List[ChatCompletionMessageParam] = [
{"role": "user", "content": pt}
]
# 计算token数
num_tokens = num_tokens_from_messages(messages)
return num_tokens, messages
while True:
num_tokens, messages = calculate_num_tokens(pubmed_list, web_list)
if num_tokens <= max_tokens:
break
# 如果超过token限制,则按照比例进行截断
logger.info(
f"start truncate documents to token limit: max_tokens: {max_tokens}"
)
logger.info(
f"pubmed_token_limit: {pubmed_token_limit}, web_token_limit: {web_token_limit}, personal_vector_token_limit: {personal_vector_token_limit}"
)
while True:
if num_tokens_from_text("\n".join(pubmed_list)) > pubmed_token_limit:
pubmed_list.pop()
else:
break
# 截断pubmed之后,重新计算token数,如果token数小于max_tokens,则停止截断
num_tokens, messages = calculate_num_tokens(pubmed_list, web_list)
if num_tokens <= max_tokens:
break
while True:
if num_tokens_from_text("\n".join(web_list)) > web_token_limit:
web_list.pop()
else:
break
# 截断web之后,重新计算token数,如果token数小于max_tokens,则停止截断
num_tokens, messages = calculate_num_tokens(pubmed_list, web_list)
if num_tokens <= max_tokens:
break
logger.info(f"Final token count: {num_tokens}")
return messages, num_tokens
def _create_messages(
self,
pubmed_results: List[Any],
web_results: List[Any],
chat_request: ChatRequest,
) -> tuple[List[ChatCompletionMessageParam], List[Any]]:
"""创建聊天消息"""
if len(pubmed_results) == 0 and len(web_results) == 0:
logger.info(f"No results found for query: {chat_request.query}")
pt = chat_request.query
messages: List[ChatCompletionMessageParam] = [
{"role": "user", "content": pt}
]
num_tokens = num_tokens_from_messages(messages)
logger.info(f"Total tokens: {num_tokens}")
return messages, []
# 构建文档文本
pubmed_texts, web_texts, citation_list = self._build_document_texts(
pubmed_results, web_results
)
# 截断文档以符合token限制
messages, num_tokens = self._truncate_documents_to_token_limit(
pubmed_texts, web_texts, chat_request
)
return messages, citation_list
async def _stream_chat_completion(
self, messages: List[ChatCompletionMessageParam]
) -> AsyncGenerator[bytes, None]:
"""流式聊天完成,支持qa-llm的main/backup配置"""
async def create_stream_with_config(
qa_config: dict, config_name: str
) -> AsyncGenerator[bytes, None]:
"""使用指定配置创建流式响应"""
try:
logger.info(f"Using qa-llm {config_name} configuration")
client = AsyncOpenAI(
api_key=qa_config["api_key"],
base_url=qa_config["base_url"],
)
chat_start_time = time.time()
# 创建聊天完成流
stream = await client.chat.completions.create(
model=qa_config["model"],
messages=messages,
stream=True,
temperature=qa_config["temperature"],
max_tokens=qa_config["max_tokens"],
)
logger.info(
f"Finished chat completion with {config_name} config, total time: {time.time() - chat_start_time:.2f}s"
)
is_start_answer = False
# 处理流式响应
async for chunk in stream:
if chunk.choices and (content := chunk.choices[0].delta.content):
if not is_start_answer:
is_start_answer = True
yield content.encode("utf-8")
except Exception as e:
logger.info(f"qa-llm {config_name} configuration failed: {e}")
raise e
async def with_fallback(main_func, backup_func):
"""高阶函数:尝试主函数,失败时使用备选函数"""
try:
async for content in main_func():
yield content
except Exception as main_error:
logger.info("Main config failed, falling back to backup configuration")
try:
async for content in backup_func():
yield content
except Exception as backup_error:
logger.error(
f"Both main and backup qa-llm configurations failed. "
f"Main error: {main_error}, Backup error: {backup_error}"
)
raise backup_error
# 创建主用和备选配置的生成器函数
async def main_stream():
logger.info("Using main qa-llm configuration")
async for content in create_stream_with_config(
self.model_config["qa-llm"]["main"], "main"
):
yield content
async def backup_stream():
logger.info("Using backup qa-llm configuration")
async for content in create_stream_with_config(
self.model_config["qa-llm"]["backup"], "backup"
):
yield content
# 使用fallback逻辑
async for content in with_fallback(main_stream, backup_stream):
yield content
|