Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,7 @@ import pandas as pd
|
|
11 |
api_key = os.getenv('API_KEY')
|
12 |
base_url = os.getenv("BASE_URL")
|
13 |
|
14 |
-
client = OpenAI(
|
15 |
-
api_key=api_key,
|
16 |
-
base_url=base_url,
|
17 |
-
)
|
18 |
|
19 |
|
20 |
def cal_tokens(message_data):
|
@@ -29,45 +26,25 @@ def cal_tokens(message_data):
|
|
29 |
|
30 |
|
31 |
def del_references(lines):
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
matches = re.search(pattern, lines, re.DOTALL)
|
41 |
if matches:
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
if matches:
|
49 |
-
lines = lines.replace(matches[0], "Tables")
|
50 |
-
print("2.1.匹配到了## References和Tables,删除了References,保留了后面的Tables")
|
51 |
-
else:
|
52 |
-
pattern = r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*?)# SUPPLEMENTARY'
|
53 |
-
matches = re.search(pattern, lines, re.DOTALL)
|
54 |
-
if matches:
|
55 |
-
lines = lines.replace(matches[0], "# SUPPLEMENTARY")
|
56 |
-
print("2.2.匹配到了## References和# SUPPLEMENTARY,删除了References,保留了后面的# SUPPLEMENTARY")
|
57 |
-
else:
|
58 |
-
pattern = r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*)\[\^0\]'
|
59 |
-
matches = re.search(pattern, lines, re.DOTALL)
|
60 |
-
if matches:
|
61 |
-
print("2.3.匹配到了## References和\[\^0\],删除了References和\[\^0\]之间的内容")
|
62 |
-
lines = lines.replace(matches[0], "[^0]")
|
63 |
-
else:
|
64 |
-
pattern = r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*)'
|
65 |
-
matches = re.search(pattern, lines, re.DOTALL)
|
66 |
-
if matches:
|
67 |
-
print("2.4.匹配到了## References,删除了References")
|
68 |
-
lines = lines.replace(matches[0], "")
|
69 |
-
else:
|
70 |
-
print("没有匹配到References")
|
71 |
return lines
|
72 |
|
73 |
|
@@ -155,11 +132,9 @@ Please pay attention to the pipe format as shown in the example below. This form
|
|
155 |
return response
|
156 |
|
157 |
|
158 |
-
def predict(prompt,
|
159 |
-
|
160 |
-
return "Please upload a PDF file to proceed."
|
161 |
|
162 |
-
file_content = extract_pdf_pypdf(pdf_file.name)
|
163 |
messages = [
|
164 |
{
|
165 |
"role": "system",
|
@@ -176,7 +151,6 @@ def predict(prompt, pdf_file):
|
|
176 |
print("prompt tokens:", tokens)
|
177 |
# time.sleep(20) # claude 需要加这个
|
178 |
if tokens > 128000:
|
179 |
-
file_content = del_references(file_content)
|
180 |
extract_result = openai_chat_2_step(prompt, file_content)
|
181 |
else:
|
182 |
extract_result = openai_api(messages)
|
@@ -242,32 +216,29 @@ def update_input():
|
|
242 |
return en_1
|
243 |
|
244 |
|
245 |
-
|
246 |
-
|
|
|
247 |
|
248 |
|
249 |
-
def
|
250 |
try:
|
251 |
-
|
252 |
-
# df = pd.read_excel(EXCEL_FILE_PATH)
|
253 |
-
df = pd.read_csv(EXCEL_FILE_PATH)
|
254 |
return df
|
255 |
except Exception as e:
|
256 |
-
return f"Error loading
|
257 |
|
258 |
|
259 |
-
def get_column_names(
|
260 |
-
df =
|
261 |
if isinstance(df, str):
|
262 |
return [] # 如果加载失败,返回空列表
|
263 |
return df.columns.tolist() # 返回列名列表
|
264 |
|
265 |
|
266 |
-
def
|
267 |
-
df = load_excel(EXCEL_FILE_PATH_Golden_Benchmark)
|
268 |
if isinstance(df, str): # 检查是否加载成功
|
269 |
return df
|
270 |
-
|
271 |
# 过滤包含关键字的行
|
272 |
if selected_column not in df.columns:
|
273 |
return "Invalid column selected."
|
@@ -276,25 +247,21 @@ def search_data_golden(keyword, selected_column):
|
|
276 |
|
277 |
if filtered_df.empty:
|
278 |
return "No results found."
|
279 |
-
|
280 |
return filtered_df.to_html(classes='data', index=False, header=True)
|
281 |
|
282 |
|
283 |
-
def
|
284 |
-
df =
|
285 |
-
|
286 |
-
return df
|
287 |
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
filtered_df = df[df[selected_column].astype(str).str.contains(keyword, case=False)]
|
293 |
|
294 |
-
if filtered_df.empty:
|
295 |
-
return "No results found."
|
296 |
|
297 |
-
|
|
|
|
|
298 |
|
299 |
|
300 |
with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
@@ -346,7 +313,7 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
346 |
| Enzyme3 | Homo sapiens | Substrate_C | 6.9 | mM | 15.6 | s^-1 | 43000 | µM^-1s^-1 | 65°C | 8.0 | T253S | NAD^+ |
|
347 |
|
348 |
""")
|
349 |
-
with gr.Tab("Golden Benchmark"):
|
350 |
gr.Markdown(
|
351 |
'''<h1 align="center"> Golden Benchmark Viewer with Advanced Search </h1>
|
352 |
</p>'''
|
@@ -357,7 +324,41 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
357 |
|
358 |
with gr.Row():
|
359 |
# 选择搜索字段
|
360 |
-
column_names = get_column_names(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
column_dropdown = gr.Dropdown(label="Select Column to Search", choices=column_names)
|
362 |
|
363 |
# 添加搜索框
|
@@ -368,13 +369,13 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
368 |
search_output = gr.HTML(label="Search Results", min_height=1000, max_height=1000)
|
369 |
|
370 |
# 设置搜索功能
|
371 |
-
search_button.click(fn=
|
372 |
|
373 |
# 将回车事件绑定到搜索按钮
|
374 |
-
search_box.submit(fn=
|
375 |
|
376 |
-
# 初始加载整个
|
377 |
-
initial_output =
|
378 |
if isinstance(initial_output, str):
|
379 |
search_output.value = initial_output # 直接将错误消息赋值
|
380 |
else:
|
@@ -391,7 +392,7 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
391 |
""")
|
392 |
with gr.Row():
|
393 |
# 选择搜索字段
|
394 |
-
column_names = get_column_names(
|
395 |
column_dropdown = gr.Dropdown(label="Select Column to Search", choices=column_names)
|
396 |
|
397 |
# 添加搜索框
|
@@ -402,21 +403,22 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
402 |
search_output = gr.HTML(label="Search Results", min_height=1000, max_height=1000)
|
403 |
|
404 |
# 设置搜索功能
|
405 |
-
search_button.click(fn=
|
406 |
|
407 |
# 将回车事件绑定到搜索按钮
|
408 |
-
search_box.submit(fn=
|
409 |
|
410 |
-
# 初始加载整个
|
411 |
-
initial_output =
|
412 |
if isinstance(initial_output, str):
|
413 |
search_output.value = initial_output # 直接将错误消息赋值
|
414 |
else:
|
415 |
search_output.value = initial_output.to_html(classes='data', index=False, header=True)
|
416 |
|
|
|
417 |
extract_button.click(extract_pdf_pypdf, inputs=file_input, outputs=text_output)
|
418 |
exp.click(update_input, outputs=model_input)
|
419 |
-
gen.click(fn=predict, inputs=[model_input,
|
420 |
clr.click(fn=lambda: [gr.update(value=""), gr.update(value="")], inputs=None, outputs=[model_input, outputs])
|
421 |
viewer_button.click(display_pdf_images, inputs=file_input, outputs=file_out)
|
422 |
|
|
|
11 |
api_key = os.getenv('API_KEY')
|
12 |
base_url = os.getenv("BASE_URL")
|
13 |
|
14 |
+
client = OpenAI(api_key=api_key, base_url=base_url)
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
def cal_tokens(message_data):
|
|
|
26 |
|
27 |
|
28 |
def del_references(lines):
|
29 |
+
# 定义正则表达式模式
|
30 |
+
patterns = [
|
31 |
+
(r'\*\{.{0,5}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*?)\\section\*\{Tables', r'\section*{Tables\n'),
|
32 |
+
(r'\*\{.{0,5}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*)', ''),
|
33 |
+
(r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*?)(Table|Tables)', r'Tables'),
|
34 |
+
(r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*?)# SUPPLEMENTARY', r'# SUPPLEMENTARY'),
|
35 |
+
(r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*?)\[\^0\]', r'[^0]'),
|
36 |
+
(r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*)', '')
|
37 |
+
]
|
38 |
+
|
39 |
+
for pattern, replacement in patterns:
|
40 |
matches = re.search(pattern, lines, re.DOTALL)
|
41 |
if matches:
|
42 |
+
lines = lines.replace(matches[0], replacement)
|
43 |
+
print(f"匹配到了 {pattern}, 删除了 References, 保留了后面的 {replacement}")
|
44 |
+
break
|
45 |
+
else:
|
46 |
+
print("没有匹配到 References")
|
47 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return lines
|
49 |
|
50 |
|
|
|
132 |
return response
|
133 |
|
134 |
|
135 |
+
def predict(prompt, file_content):
|
136 |
+
file_content = del_references(file_content)
|
|
|
137 |
|
|
|
138 |
messages = [
|
139 |
{
|
140 |
"role": "system",
|
|
|
151 |
print("prompt tokens:", tokens)
|
152 |
# time.sleep(20) # claude 需要加这个
|
153 |
if tokens > 128000:
|
|
|
154 |
extract_result = openai_chat_2_step(prompt, file_content)
|
155 |
else:
|
156 |
extract_result = openai_api(messages)
|
|
|
216 |
return en_1
|
217 |
|
218 |
|
219 |
+
CSV_FILE_PATH_Golden_Benchmark_Enzyme = "static/Golden Benchmark for Enzyme Kinetics.csv"
|
220 |
+
CSV_FILE_PATH_Golden_Benchmark_Ribozyme = "static/Golden Benchmark for Ribozyme Kinetics.csv"
|
221 |
+
CSV_FILE_PATH_LLENKA_Dataset = "static/3450_merged_data_2000_lines.csv"
|
222 |
|
223 |
|
224 |
+
def load_csv(CSV_FILE_PATH):
|
225 |
try:
|
226 |
+
df = pd.read_csv(CSV_FILE_PATH)
|
|
|
|
|
227 |
return df
|
228 |
except Exception as e:
|
229 |
+
return f"Error loading CSV file: {e}"
|
230 |
|
231 |
|
232 |
+
def get_column_names(CSV_FILE_PATH):
|
233 |
+
df = load_csv(CSV_FILE_PATH)
|
234 |
if isinstance(df, str):
|
235 |
return [] # 如果加载失败,返回空列表
|
236 |
return df.columns.tolist() # 返回列名列表
|
237 |
|
238 |
|
239 |
+
def search_data(df, keyword, selected_column):
|
|
|
240 |
if isinstance(df, str): # 检查是否加载成功
|
241 |
return df
|
|
|
242 |
# 过滤包含关键字的行
|
243 |
if selected_column not in df.columns:
|
244 |
return "Invalid column selected."
|
|
|
247 |
|
248 |
if filtered_df.empty:
|
249 |
return "No results found."
|
|
|
250 |
return filtered_df.to_html(classes='data', index=False, header=True)
|
251 |
|
252 |
|
253 |
+
def search_data_golden_Enzyme(keyword, selected_column):
|
254 |
+
df = load_csv(CSV_FILE_PATH_Golden_Benchmark_Enzyme)
|
255 |
+
return search_data(df, keyword, selected_column)
|
|
|
256 |
|
257 |
+
def search_data_golden_Ribozyme(keyword, selected_column):
|
258 |
+
df = load_csv(CSV_FILE_PATH_Golden_Benchmark_Ribozyme)
|
259 |
+
return search_data(df, keyword, selected_column)
|
|
|
|
|
260 |
|
|
|
|
|
261 |
|
262 |
+
def search_data_LLENKA(keyword, selected_column):
|
263 |
+
df = load_csv(CSV_FILE_PATH_LLENKA_Dataset)
|
264 |
+
return search_data(df, keyword, selected_column)
|
265 |
|
266 |
|
267 |
with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
|
313 |
| Enzyme3 | Homo sapiens | Substrate_C | 6.9 | mM | 15.6 | s^-1 | 43000 | µM^-1s^-1 | 65°C | 8.0 | T253S | NAD^+ |
|
314 |
|
315 |
""")
|
316 |
+
with gr.Tab("Golden Benchmark for Enzyme Kinetics"):
|
317 |
gr.Markdown(
|
318 |
'''<h1 align="center"> Golden Benchmark Viewer with Advanced Search </h1>
|
319 |
</p>'''
|
|
|
324 |
|
325 |
with gr.Row():
|
326 |
# 选择搜索字段
|
327 |
+
column_names = get_column_names(CSV_FILE_PATH_Golden_Benchmark_Enzyme)
|
328 |
+
column_dropdown = gr.Dropdown(label="Select Column to Search", choices=column_names)
|
329 |
+
|
330 |
+
# 添加搜索框
|
331 |
+
search_box = gr.Textbox(label="Search", placeholder="Enter keyword to search...")
|
332 |
+
# 按钮点击后执行搜索
|
333 |
+
search_button = gr.Button("Search", variant="primary")
|
334 |
+
|
335 |
+
search_output = gr.HTML(label="Search Results", min_height=1000, max_height=1000)
|
336 |
+
|
337 |
+
# 设置搜索功能
|
338 |
+
search_button.click(fn=search_data_golden_Enzyme, inputs=[search_box, column_dropdown], outputs=search_output)
|
339 |
+
|
340 |
+
# 将回车事件绑定到搜索按钮
|
341 |
+
search_box.submit(fn=search_data_golden_Enzyme, inputs=[search_box, column_dropdown], outputs=search_output)
|
342 |
+
|
343 |
+
# 初始加载整个 CSV 表格
|
344 |
+
initial_output = load_csv(CSV_FILE_PATH_Golden_Benchmark_Enzyme)
|
345 |
+
if isinstance(initial_output, str):
|
346 |
+
search_output.value = initial_output # 直接将错误消息赋值
|
347 |
+
else:
|
348 |
+
search_output.value = initial_output.to_html(classes='data', index=False, header=True)
|
349 |
+
|
350 |
+
with gr.Tab("Golden Benchmark for Ribozyme Kinetics"):
|
351 |
+
gr.Markdown(
|
352 |
+
'''<h1 align="center"> Golden Benchmark Viewer with Advanced Search </h1>
|
353 |
+
</p>'''
|
354 |
+
)
|
355 |
+
gr.Markdown("""
|
356 |
+
dataset can be download in [LLM-Ribozyme-Kinetics-Golden-Benchmark](https://huggingface.co/datasets/jackkuo/LLM-Ribozyme-Kinetics-Golden-Benchmark)
|
357 |
+
""")
|
358 |
+
|
359 |
+
with gr.Row():
|
360 |
+
# 选择搜索字段
|
361 |
+
column_names = get_column_names(CSV_FILE_PATH_Golden_Benchmark_Ribozyme)
|
362 |
column_dropdown = gr.Dropdown(label="Select Column to Search", choices=column_names)
|
363 |
|
364 |
# 添加搜索框
|
|
|
369 |
search_output = gr.HTML(label="Search Results", min_height=1000, max_height=1000)
|
370 |
|
371 |
# 设置搜索功能
|
372 |
+
search_button.click(fn=search_data_golden_Ribozyme, inputs=[search_box, column_dropdown], outputs=search_output)
|
373 |
|
374 |
# 将回车事件绑定到搜索按钮
|
375 |
+
search_box.submit(fn=search_data_golden_Ribozyme, inputs=[search_box, column_dropdown], outputs=search_output)
|
376 |
|
377 |
+
# 初始加载整个 CSV 表格
|
378 |
+
initial_output = load_csv(CSV_FILE_PATH_Golden_Benchmark_Ribozyme)
|
379 |
if isinstance(initial_output, str):
|
380 |
search_output.value = initial_output # 直接将错误消息赋值
|
381 |
else:
|
|
|
392 |
""")
|
393 |
with gr.Row():
|
394 |
# 选择搜索字段
|
395 |
+
column_names = get_column_names(CSV_FILE_PATH_LLENKA_Dataset)
|
396 |
column_dropdown = gr.Dropdown(label="Select Column to Search", choices=column_names)
|
397 |
|
398 |
# 添加搜索框
|
|
|
403 |
search_output = gr.HTML(label="Search Results", min_height=1000, max_height=1000)
|
404 |
|
405 |
# 设置搜索功能
|
406 |
+
search_button.click(fn=search_data_LLENKA, inputs=[search_box, column_dropdown], outputs=search_output)
|
407 |
|
408 |
# 将回车事件绑定到搜索按钮
|
409 |
+
search_box.submit(fn=search_data_LLENKA, inputs=[search_box, column_dropdown], outputs=search_output)
|
410 |
|
411 |
+
# 初始加载整个 CSV 表格
|
412 |
+
initial_output = load_csv(CSV_FILE_PATH_LLENKA_Dataset)
|
413 |
if isinstance(initial_output, str):
|
414 |
search_output.value = initial_output # 直接将错误消息赋值
|
415 |
else:
|
416 |
search_output.value = initial_output.to_html(classes='data', index=False, header=True)
|
417 |
|
418 |
+
|
419 |
extract_button.click(extract_pdf_pypdf, inputs=file_input, outputs=text_output)
|
420 |
exp.click(update_input, outputs=model_input)
|
421 |
+
gen.click(fn=predict, inputs=[model_input, text_output], outputs=outputs)
|
422 |
clr.click(fn=lambda: [gr.update(value=""), gr.update(value="")], inputs=None, outputs=[model_input, outputs])
|
423 |
viewer_button.click(display_pdf_images, inputs=file_input, outputs=file_out)
|
424 |
|