Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from openai import OpenAI
|
|
|
2 |
import gradio as gr
|
3 |
import fitz # PyMuPDF
|
4 |
from PIL import Image
|
@@ -28,11 +29,20 @@ def cal_tokens(message_data):
|
|
28 |
def del_references(lines):
|
29 |
# 定义正则表达式模式
|
30 |
patterns = [
|
31 |
-
(
|
32 |
-
|
33 |
-
|
34 |
-
(r'
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
(r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*)', '')
|
37 |
]
|
38 |
|
@@ -68,12 +78,25 @@ def extract_pdf_pypdf(pdf_dir):
|
|
68 |
return file_content
|
69 |
|
70 |
|
71 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
try:
|
73 |
completion = client.chat.completions.create(
|
74 |
-
model=
|
75 |
messages=messages,
|
76 |
-
temperature=
|
77 |
max_tokens=8192,
|
78 |
stream=True
|
79 |
)
|
@@ -85,10 +108,10 @@ def openai_api(messages):
|
|
85 |
return None
|
86 |
|
87 |
|
88 |
-
def openai_chat_2_step(prompt, file_content):
|
89 |
all_response = ""
|
90 |
-
for i in range(len(file_content)//123000 + 1):
|
91 |
-
text = file_content[i*123000:(i+1)*123000]
|
92 |
# step1: 拆分两部分,前半部分
|
93 |
messages = [
|
94 |
{
|
@@ -101,7 +124,7 @@ def openai_chat_2_step(prompt, file_content):
|
|
101 |
tokens = cal_tokens(messages)
|
102 |
print("step一: 抽取部分{}:".format(i))
|
103 |
print("prompt tokens:", tokens)
|
104 |
-
response_2_content = openai_api(messages)
|
105 |
if response_2_content:
|
106 |
all_response += response_2_content + "\n"
|
107 |
|
@@ -128,11 +151,11 @@ Please pay attention to the pipe format as shown in the example below. This form
|
|
128 |
tokens = cal_tokens(messages)
|
129 |
print("step二: 合并部分:")
|
130 |
print("prompt tokens:", tokens)
|
131 |
-
response = openai_api(messages)
|
132 |
return response
|
133 |
|
134 |
|
135 |
-
def predict(prompt, file_content):
|
136 |
file_content = del_references(file_content)
|
137 |
|
138 |
messages = [
|
@@ -151,9 +174,9 @@ def predict(prompt, file_content):
|
|
151 |
print("prompt tokens:", tokens)
|
152 |
# time.sleep(20) # claude 需要加这个
|
153 |
if tokens > 128000:
|
154 |
-
extract_result = openai_chat_2_step(prompt, file_content)
|
155 |
else:
|
156 |
-
extract_result = openai_api(messages)
|
157 |
|
158 |
return extract_result or "Too many users. Please wait a moment!"
|
159 |
|
@@ -254,6 +277,7 @@ def search_data_golden_Enzyme(keyword, selected_column):
|
|
254 |
df = load_csv(CSV_FILE_PATH_Golden_Benchmark_Enzyme)
|
255 |
return search_data(df, keyword, selected_column)
|
256 |
|
|
|
257 |
def search_data_golden_Ribozyme(keyword, selected_column):
|
258 |
df = load_csv(CSV_FILE_PATH_Golden_Benchmark_Ribozyme)
|
259 |
return search_data(df, keyword, selected_column)
|
@@ -272,20 +296,21 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
272 |
<p>How to use:
|
273 |
<br><strong>1</strong>: Upload your PDF.
|
274 |
<br><strong>2</strong>: Click "View PDF" to preview it.
|
275 |
-
<br><strong>3</strong>: Click "
|
276 |
<br><strong>4</strong>: Enter your extraction prompt in the input box.
|
277 |
-
<br><strong>5</strong>: Click "Generate" to extract, and the extracted information will display below.
|
278 |
</p>'''
|
279 |
)
|
280 |
file_input = gr.File(label="Upload your PDF", type="filepath")
|
281 |
example = gr.Examples(examples=[["./sample.pdf"]], inputs=file_input)
|
282 |
with gr.Row():
|
283 |
viewer_button = gr.Button("View PDF", variant="secondary")
|
284 |
-
|
|
|
|
|
285 |
|
286 |
with gr.Row():
|
287 |
with gr.Column(scale=1):
|
288 |
-
|
289 |
file_out = gr.Gallery(label="PDF Viewer", columns=1, height="auto", object_fit="contain")
|
290 |
|
291 |
with gr.Column(scale=1):
|
@@ -301,8 +326,17 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
301 |
)
|
302 |
|
303 |
with gr.Column():
|
304 |
-
model_input = gr.Textbox(lines=7, value=en_1, placeholder='Enter your extraction prompt here',
|
|
|
305 |
exp = gr.Button("Example Prompt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
with gr.Row():
|
307 |
gen = gr.Button("Generate", variant="primary")
|
308 |
clr = gr.Button("Clear")
|
@@ -335,7 +369,8 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
335 |
search_output = gr.HTML(label="Search Results", min_height=1000, max_height=1000)
|
336 |
|
337 |
# 设置搜索功能
|
338 |
-
search_button.click(fn=search_data_golden_Enzyme, inputs=[search_box, column_dropdown],
|
|
|
339 |
|
340 |
# 将回车事件绑定到搜索按钮
|
341 |
search_box.submit(fn=search_data_golden_Enzyme, inputs=[search_box, column_dropdown], outputs=search_output)
|
@@ -369,10 +404,12 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
369 |
search_output = gr.HTML(label="Search Results", min_height=1000, max_height=1000)
|
370 |
|
371 |
# 设置搜索功能
|
372 |
-
search_button.click(fn=search_data_golden_Ribozyme, inputs=[search_box, column_dropdown],
|
|
|
373 |
|
374 |
# 将回车事件绑定到搜索按钮
|
375 |
-
search_box.submit(fn=search_data_golden_Ribozyme, inputs=[search_box, column_dropdown],
|
|
|
376 |
|
377 |
# 初始加载整个 CSV 表格
|
378 |
initial_output = load_csv(CSV_FILE_PATH_Golden_Benchmark_Ribozyme)
|
@@ -415,14 +452,13 @@ with gr.Blocks(title="Automated Enzyme Kinetics Extractor") as demo:
|
|
415 |
else:
|
416 |
search_output.value = initial_output.to_html(classes='data', index=False, header=True)
|
417 |
|
418 |
-
|
419 |
|
420 |
-
|
|
|
|
|
421 |
exp.click(update_input, outputs=model_input)
|
422 |
-
gen.click(fn=predict, inputs=[model_input, text_output], outputs=outputs)
|
423 |
clr.click(fn=lambda: [gr.update(value=""), gr.update(value="")], inputs=None, outputs=[model_input, outputs])
|
424 |
viewer_button.click(display_pdf_images, inputs=file_input, outputs=file_out)
|
425 |
|
426 |
-
|
427 |
demo.launch()
|
428 |
-
|
|
|
1 |
from openai import OpenAI
|
2 |
+
from ocr_mathpix import extract_pdf_mathpix
|
3 |
import gradio as gr
|
4 |
import fitz # PyMuPDF
|
5 |
from PIL import Image
|
|
|
29 |
def del_references(lines):
|
30 |
# 定义正则表达式模式
|
31 |
patterns = [
|
32 |
+
(
|
33 |
+
r'\*\{.{0,5}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*?)\\section\*\{Tables',
|
34 |
+
r'\section*{Tables\n'),
|
35 |
+
(r'\*\{.{0,5}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*)',
|
36 |
+
''),
|
37 |
+
(
|
38 |
+
r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*?)(Table|Tables)',
|
39 |
+
r'Tables'),
|
40 |
+
(
|
41 |
+
r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*?)# SUPPLEMENTARY',
|
42 |
+
r'# SUPPLEMENTARY'),
|
43 |
+
(
|
44 |
+
r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*?)\[\^0\]',
|
45 |
+
r'[^0]'),
|
46 |
(r'#.{0,15}(References|Reference|REFERENCES|LITERATURE CITED|Referencesand notes|Notes and references)(.*)', '')
|
47 |
]
|
48 |
|
|
|
78 |
return file_content
|
79 |
|
80 |
|
81 |
+
def extract_pdf_md(pdf_dir):
|
82 |
+
print(f"start convert pdf 2 md: {pdf_dir}")
|
83 |
+
try:
|
84 |
+
content = extract_pdf_mathpix(pdf_folder_dir=os.path.split(pdf_dir)[0], pdf_dir=os.path.split(pdf_dir)[1],
|
85 |
+
md_folder_dir=os.path.split(pdf_dir)[0])
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error opening PDF: {e}")
|
88 |
+
return None
|
89 |
+
|
90 |
+
return content
|
91 |
+
|
92 |
+
|
93 |
+
def openai_api(messages, model="claude-3-5-sonnet-20240620", temperature=0.1):
|
94 |
+
print("use model:", model, "temperature:", temperature)
|
95 |
try:
|
96 |
completion = client.chat.completions.create(
|
97 |
+
model=model,
|
98 |
messages=messages,
|
99 |
+
temperature=temperature,
|
100 |
max_tokens=8192,
|
101 |
stream=True
|
102 |
)
|
|
|
108 |
return None
|
109 |
|
110 |
|
111 |
+
def openai_chat_2_step(prompt, file_content, model, temperature):
|
112 |
all_response = ""
|
113 |
+
for i in range(len(file_content) // 123000 + 1):
|
114 |
+
text = file_content[i * 123000:(i + 1) * 123000]
|
115 |
# step1: 拆分两部分,前半部分
|
116 |
messages = [
|
117 |
{
|
|
|
124 |
tokens = cal_tokens(messages)
|
125 |
print("step一: 抽取部分{}:".format(i))
|
126 |
print("prompt tokens:", tokens)
|
127 |
+
response_2_content = openai_api(messages, model, temperature)
|
128 |
if response_2_content:
|
129 |
all_response += response_2_content + "\n"
|
130 |
|
|
|
151 |
tokens = cal_tokens(messages)
|
152 |
print("step二: 合并部分:")
|
153 |
print("prompt tokens:", tokens)
|
154 |
+
response = openai_api(messages, model, temperature)
|
155 |
return response
|
156 |
|
157 |
|
158 |
+
def predict(prompt, file_content, model="claude-3-5-sonnet-20240620", temperature=0.1):
|
159 |
file_content = del_references(file_content)
|
160 |
|
161 |
messages = [
|
|
|
174 |
print("prompt tokens:", tokens)
|
175 |
# time.sleep(20) # claude 需要加这个
|
176 |
if tokens > 128000:
|
177 |
+
extract_result = openai_chat_2_step(prompt, file_content, model, temperature)
|
178 |
else:
|
179 |
+
extract_result = openai_api(messages, model, temperature)
|
180 |
|
181 |
return extract_result or "Too many users. Please wait a moment!"
|
182 |
|
|
|
277 |
df = load_csv(CSV_FILE_PATH_Golden_Benchmark_Enzyme)
|
278 |
return search_data(df, keyword, selected_column)
|
279 |
|
280 |
+
|
281 |
def search_data_golden_Ribozyme(keyword, selected_column):
|
282 |
df = load_csv(CSV_FILE_PATH_Golden_Benchmark_Ribozyme)
|
283 |
return search_data(df, keyword, selected_column)
|
|
|
296 |
<p>How to use:
|
297 |
<br><strong>1</strong>: Upload your PDF.
|
298 |
<br><strong>2</strong>: Click "View PDF" to preview it.
|
299 |
+
<br><strong>3</strong>: Click "Convert to Markdown(Mathpix)/Convert to Text(PyMuPDF)" to extract PDF to Text.
|
300 |
<br><strong>4</strong>: Enter your extraction prompt in the input box.
|
301 |
+
<br><strong>5</strong>: Click "Generate" to extract data, and the extracted information will display below.
|
302 |
</p>'''
|
303 |
)
|
304 |
file_input = gr.File(label="Upload your PDF", type="filepath")
|
305 |
example = gr.Examples(examples=[["./sample.pdf"]], inputs=file_input)
|
306 |
with gr.Row():
|
307 |
viewer_button = gr.Button("View PDF", variant="secondary")
|
308 |
+
with gr.Row():
|
309 |
+
extract_button_md = gr.Button("Convert to Markdown(Mathpix)", variant="primary")
|
310 |
+
extract_button_text = gr.Button("Convert to Text(PyMuPDF)", variant="primary")
|
311 |
|
312 |
with gr.Row():
|
313 |
with gr.Column(scale=1):
|
|
|
314 |
file_out = gr.Gallery(label="PDF Viewer", columns=1, height="auto", object_fit="contain")
|
315 |
|
316 |
with gr.Column(scale=1):
|
|
|
326 |
)
|
327 |
|
328 |
with gr.Column():
|
329 |
+
model_input = gr.Textbox(lines=7, value=en_1, placeholder='Enter your extraction prompt here',
|
330 |
+
label='Input Prompt')
|
331 |
exp = gr.Button("Example Prompt")
|
332 |
+
with gr.Row():
|
333 |
+
# 模型选择下拉菜单
|
334 |
+
model_choices = ["claude-3-5-sonnet-20240620", "gpt-4o-2024-08-06"]
|
335 |
+
model_dropdown = gr.Dropdown(choices=model_choices, label="Select Model", value=model_choices[0])
|
336 |
+
|
337 |
+
# 温度选择滑块
|
338 |
+
temp_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="Temperature", value=0.1)
|
339 |
+
|
340 |
with gr.Row():
|
341 |
gen = gr.Button("Generate", variant="primary")
|
342 |
clr = gr.Button("Clear")
|
|
|
369 |
search_output = gr.HTML(label="Search Results", min_height=1000, max_height=1000)
|
370 |
|
371 |
# 设置搜索功能
|
372 |
+
search_button.click(fn=search_data_golden_Enzyme, inputs=[search_box, column_dropdown],
|
373 |
+
outputs=search_output)
|
374 |
|
375 |
# 将回车事件绑定到搜索按钮
|
376 |
search_box.submit(fn=search_data_golden_Enzyme, inputs=[search_box, column_dropdown], outputs=search_output)
|
|
|
404 |
search_output = gr.HTML(label="Search Results", min_height=1000, max_height=1000)
|
405 |
|
406 |
# 设置搜索功能
|
407 |
+
search_button.click(fn=search_data_golden_Ribozyme, inputs=[search_box, column_dropdown],
|
408 |
+
outputs=search_output)
|
409 |
|
410 |
# 将回车事件绑定到搜索按钮
|
411 |
+
search_box.submit(fn=search_data_golden_Ribozyme, inputs=[search_box, column_dropdown],
|
412 |
+
outputs=search_output)
|
413 |
|
414 |
# 初始加载整个 CSV 表格
|
415 |
initial_output = load_csv(CSV_FILE_PATH_Golden_Benchmark_Ribozyme)
|
|
|
452 |
else:
|
453 |
search_output.value = initial_output.to_html(classes='data', index=False, header=True)
|
454 |
|
|
|
455 |
|
456 |
+
|
457 |
+
extract_button_md.click(extract_pdf_md, inputs=file_input, outputs=text_output)
|
458 |
+
extract_button_text.click(extract_pdf_pypdf, inputs=file_input, outputs=text_output)
|
459 |
exp.click(update_input, outputs=model_input)
|
460 |
+
gen.click(fn=predict, inputs=[model_input, text_output, model_dropdown, temp_slider], outputs=outputs)
|
461 |
clr.click(fn=lambda: [gr.update(value=""), gr.update(value="")], inputs=None, outputs=[model_input, outputs])
|
462 |
viewer_button.click(display_pdf_images, inputs=file_input, outputs=file_out)
|
463 |
|
|
|
464 |
demo.launch()
|
|