import gradio import os from langchain.chains.question_answering import load_qa_chain from langchain.document_loaders import UnstructuredURLLoader # from langchain import HuggingFaceHub from langchain import OpenAI # os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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" # llm = HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0.1, "max_length":512}) # os.environ["LANGCHAIN_TRACING_V2"] = "true" # os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" # os.environ["LANGCHAIN_API_KEY"] = "ls__ae9b316f4ee9475b84f66c616344d713" # os.environ["LANGCHAIN_PROJECT"] = "Sequential-Chain" os.environ["OPENAI_API_KEY"] = 'sk-siyoMOttFuCrzfdETrRFS7bz140Dk5DUklCIW3UyVTzooiKj' os.environ['OPENAI_API_BASE'] = 'https://api.chatanywhere.com.cn' llm=OpenAI(temperature=0.7, model_name="gpt-3.5-turbo", max_tokens=1024) def main(): gradio_interface = gradio.Interface( fn = my_inference_function, inputs = "text", outputs = "text") gradio_interface.launch() def my_inference_function(url): loader = UnstructuredURLLoader(urls=[url]) data = loader.load() chain = load_qa_chain(llm=llm, chain_type="stuff") response = chain.run(input_documents=data, question="Summarize this article in a paragraph and provide a name and link") return response if __name__ == '__main__': main()