Spaces:
Sleeping
Sleeping
import gradio | |
import os | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.document_loaders import UnstructuredURLLoader | |
# from langchain import HuggingFaceHub | |
from langchain import OpenAI | |
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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" | |
# llm = HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0.1, "max_length":512}) | |
# os.environ["LANGCHAIN_TRACING_V2"] = "true" | |
# os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" | |
# os.environ["LANGCHAIN_API_KEY"] = "ls__ae9b316f4ee9475b84f66c616344d713" | |
# os.environ["LANGCHAIN_PROJECT"] = "Sequential-Chain" | |
os.environ["OPENAI_API_KEY"] = 'sk-siyoMOttFuCrzfdETrRFS7bz140Dk5DUklCIW3UyVTzooiKj' | |
os.environ['OPENAI_API_BASE'] = 'https://api.chatanywhere.com.cn' | |
llm=OpenAI(temperature=0.7, model_name="gpt-3.5-turbo", max_tokens=1024) | |
def main(): | |
gradio_interface = gradio.Interface( | |
fn = my_inference_function, | |
inputs = "text", | |
outputs = "text") | |
gradio_interface.launch() | |
def my_inference_function(url): | |
loader = UnstructuredURLLoader(urls=[url]) | |
data = loader.load() | |
chain = load_qa_chain(llm=llm, chain_type="stuff") | |
# response = chain.run(input_documents=data, question="Summarize this article in a paragraph and provide a name and link") | |
response = chain.run(input_documents=data, question="Please summarize the content of the article in 50 words in Chinese. 请用 50 个字的中文总结文章的内容") | |
return response | |
if __name__ == '__main__': | |
main() |