dongyubin
提取
855709e
raw
history blame
1.58 kB
import gradio
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredURLLoader
# from langchain import HuggingFaceHub
from langchain import OpenAI
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
# llm = HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0.1, "max_length":512})
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
# os.environ["LANGCHAIN_API_KEY"] = "ls__ae9b316f4ee9475b84f66c616344d713"
# os.environ["LANGCHAIN_PROJECT"] = "Sequential-Chain"
os.environ["OPENAI_API_KEY"] = 'sk-siyoMOttFuCrzfdETrRFS7bz140Dk5DUklCIW3UyVTzooiKj'
os.environ['OPENAI_API_BASE'] = 'https://api.chatanywhere.com.cn'
llm=OpenAI(temperature=0.7, model_name="gpt-3.5-turbo", max_tokens=1024)
def main():
gradio_interface = gradio.Interface(
fn = my_inference_function,
inputs = "text",
outputs = "text")
gradio_interface.launch()
def my_inference_function(url):
loader = UnstructuredURLLoader(urls=[url])
data = loader.load()
chain = load_qa_chain(llm=llm, chain_type="stuff")
# response = chain.run(input_documents=data, question="Summarize this article in a paragraph and provide a name and link")
response = chain.run(input_documents=data, question="Extract or summarize the tool names, introductions, and links in the article. ζε–ζˆ–ζ€»η»“ζ–‡η« δΈ­ηš„ε·₯具名称、介绍、链ζŽ₯")
return response
if __name__ == '__main__':
main()