dongyubin
更新
dbe832f
raw
history blame
1.6 kB
import gradio
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.document_loaders import UnstructuredURLLoader
from langchain import HuggingFaceHub
import openai
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
# llm = HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0.1, "max_length":512})
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
# os.environ["LANGCHAIN_API_KEY"] = "ls__ae9b316f4ee9475b84f66c616344d713"
# os.environ["LANGCHAIN_PROJECT"] = "Sequential-Chain"
openai.api_key = 'sk-siyoMOttFuCrzfdETrRFS7bz140Dk5DUklCIW3UyVTzooiKj'
openai.api_base = 'https://api.chatanywhere.com.cn'
llm = openai.Completion.create(
engine="text-davinci-003", # 使用 GPT-3.5 Turbo 引擎
max_tokens=50, # 设置生成的回复最大长度
temperature=0.7, # 控制生成回复的随机性
n=1, # 生成一个回复
stop=None, # 可选的停止标记,用于结束回复的生成
)
def main():
gradio_interface = gradio.Interface(
fn = my_inference_function,
inputs = "text",
outputs = "text")
gradio_interface.launch()
def my_inference_function(url):
loader = UnstructuredURLLoader(urls=[url])
data = loader.load()
chain = load_qa_chain(llm=llm, chain_type="stuff")
response = chain.run(input_documents=data, question="Summarize this article in a paragraph and provide a name and link")
return response
if __name__ == '__main__':
main()