Spaces:
Sleeping
Sleeping
import gradio | |
import os | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.document_loaders import UnstructuredURLLoader | |
from langchain import HuggingFaceHub | |
import openai | |
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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" | |
# llm = HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0.1, "max_length":512}) | |
# os.environ["LANGCHAIN_TRACING_V2"] = "true" | |
# os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" | |
# os.environ["LANGCHAIN_API_KEY"] = "ls__ae9b316f4ee9475b84f66c616344d713" | |
# os.environ["LANGCHAIN_PROJECT"] = "Sequential-Chain" | |
openai.api_key = 'sk-siyoMOttFuCrzfdETrRFS7bz140Dk5DUklCIW3UyVTzooiKj' | |
openai.api_base = 'https://api.chatanywhere.com.cn' | |
llm = openai.Completion.create( | |
engine="text-davinci-003", # 使用 GPT-3.5 Turbo 引擎 | |
max_tokens=50, # 设置生成的回复最大长度 | |
temperature=0.7, # 控制生成回复的随机性 | |
n=1, # 生成一个回复 | |
stop=None, # 可选的停止标记,用于结束回复的生成 | |
) | |
def main(): | |
gradio_interface = gradio.Interface( | |
fn = my_inference_function, | |
inputs = "text", | |
outputs = "text") | |
gradio_interface.launch() | |
def my_inference_function(url): | |
loader = UnstructuredURLLoader(urls=[url]) | |
data = loader.load() | |
chain = load_qa_chain(llm=llm, chain_type="stuff") | |
response = chain.run(input_documents=data, question="Summarize this article in a paragraph and provide a name and link") | |
return response | |
if __name__ == '__main__': | |
main() |