File size: 1,276 Bytes
8533608
9322a5c
8987036
9322a5c
8533608
c3c7832
 
 
 
 
8533608
c3c7832
8533608
c3c7832
 
8533608
 
c3c7832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# import part
import streamlit as st
from transformers import pipeline

# function part
# img2text
def img2text(url):
    image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
    text = image_to_text_model(url)[0]["generated_text"]
    return text

# text2story
def text2story(text):
    pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
    story_text = pipe(text)[0]['generated_text']
    return story_text

# text2audio
def text2audio(story_text):
    pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng")
    audio_data = pipe(story_text)
    return audio_data


def main():
    st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
    st.header("Turn Your Image to Audio Story")
    uploaded_file = st.file_uploader("Select an Image...")

    if uploaded_file is not None:
        print(uploaded_file)
        bytes_data = uploaded_file.getvalue()
        with open(uploaded_file.name, "wb") as file:
            file.write(bytes_data)
        st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)


        #Stage 1: Image to Text
        st.text('Processing img2text...')
        scenario = img2text(uploaded_file.name)
        st.write(scenario)