|
"""MonoDepthNet: Network for monocular depth estimation trained by mixing several datasets. |
|
This file contains code that is adapted from |
|
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
from torchvision import models |
|
|
|
|
|
class MonoDepthNet(nn.Module): |
|
"""Network for monocular depth estimation. |
|
""" |
|
|
|
def __init__(self, path=None, features=256): |
|
"""Init. |
|
|
|
Args: |
|
path (str, optional): Path to saved model. Defaults to None. |
|
features (int, optional): Number of features. Defaults to 256. |
|
""" |
|
super().__init__() |
|
|
|
resnet = models.resnet50(pretrained=False) |
|
|
|
self.pretrained = nn.Module() |
|
self.scratch = nn.Module() |
|
self.pretrained.layer1 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, |
|
resnet.maxpool, resnet.layer1) |
|
|
|
self.pretrained.layer2 = resnet.layer2 |
|
self.pretrained.layer3 = resnet.layer3 |
|
self.pretrained.layer4 = resnet.layer4 |
|
|
|
|
|
self.scratch.layer1_rn = nn.Conv2d(256, features, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.scratch.layer2_rn = nn.Conv2d(512, features, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.scratch.layer3_rn = nn.Conv2d(1024, features, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.scratch.layer4_rn = nn.Conv2d(2048, features, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
|
self.scratch.refinenet4 = FeatureFusionBlock(features) |
|
self.scratch.refinenet3 = FeatureFusionBlock(features) |
|
self.scratch.refinenet2 = FeatureFusionBlock(features) |
|
self.scratch.refinenet1 = FeatureFusionBlock(features) |
|
|
|
|
|
self.scratch.output_conv = nn.Sequential(nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1), |
|
nn.Conv2d(128, 1, kernel_size=3, stride=1, padding=1), |
|
Interpolate(scale_factor=2, mode='bilinear')) |
|
|
|
|
|
if path: |
|
self.load(path) |
|
|
|
def forward(self, x): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (tensor): input data (image) |
|
|
|
Returns: |
|
tensor: depth |
|
""" |
|
layer_1 = self.pretrained.layer1(x) |
|
layer_2 = self.pretrained.layer2(layer_1) |
|
layer_3 = self.pretrained.layer3(layer_2) |
|
layer_4 = self.pretrained.layer4(layer_3) |
|
|
|
layer_1_rn = self.scratch.layer1_rn(layer_1) |
|
layer_2_rn = self.scratch.layer2_rn(layer_2) |
|
layer_3_rn = self.scratch.layer3_rn(layer_3) |
|
layer_4_rn = self.scratch.layer4_rn(layer_4) |
|
|
|
path_4 = self.scratch.refinenet4(layer_4_rn) |
|
path_3 = self.scratch.refinenet3(path_4, layer_3_rn) |
|
path_2 = self.scratch.refinenet2(path_3, layer_2_rn) |
|
path_1 = self.scratch.refinenet1(path_2, layer_1_rn) |
|
|
|
out = self.scratch.output_conv(path_1) |
|
|
|
return out |
|
|
|
def load(self, path): |
|
"""Load model from file. |
|
|
|
Args: |
|
path (str): file path |
|
""" |
|
parameters = torch.load(path) |
|
|
|
self.load_state_dict(parameters) |
|
|
|
|
|
class Interpolate(nn.Module): |
|
"""Interpolation module. |
|
""" |
|
|
|
def __init__(self, scale_factor, mode): |
|
"""Init. |
|
|
|
Args: |
|
scale_factor (float): scaling |
|
mode (str): interpolation mode |
|
""" |
|
super(Interpolate, self).__init__() |
|
|
|
self.interp = nn.functional.interpolate |
|
self.scale_factor = scale_factor |
|
self.mode = mode |
|
|
|
def forward(self, x): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (tensor): input |
|
|
|
Returns: |
|
tensor: interpolated data |
|
""" |
|
x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=False) |
|
|
|
return x |
|
|
|
|
|
class ResidualConvUnit(nn.Module): |
|
"""Residual convolution module. |
|
""" |
|
|
|
def __init__(self, features): |
|
"""Init. |
|
|
|
Args: |
|
features (int): number of features |
|
""" |
|
super().__init__() |
|
|
|
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True) |
|
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
"""Forward pass. |
|
|
|
Args: |
|
x (tensor): input |
|
|
|
Returns: |
|
tensor: output |
|
""" |
|
out = self.relu(x) |
|
out = self.conv1(out) |
|
out = self.relu(out) |
|
out = self.conv2(out) |
|
|
|
return out + x |
|
|
|
|
|
class FeatureFusionBlock(nn.Module): |
|
"""Feature fusion block. |
|
""" |
|
|
|
def __init__(self, features): |
|
"""Init. |
|
|
|
Args: |
|
features (int): number of features |
|
""" |
|
super().__init__() |
|
|
|
self.resConfUnit = ResidualConvUnit(features) |
|
|
|
def forward(self, *xs): |
|
"""Forward pass. |
|
|
|
Returns: |
|
tensor: output |
|
""" |
|
output = xs[0] |
|
|
|
if len(xs) == 2: |
|
output += self.resConfUnit(xs[1]) |
|
|
|
output = self.resConfUnit(output) |
|
output = nn.functional.interpolate(output, scale_factor=2, |
|
mode='bilinear', align_corners=True) |
|
|
|
return output |
|
|