File size: 18,403 Bytes
498ffec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
from abc import ABC, abstractmethod
import time
import requests
import json
import math
from langsmith import Client
from langchain_openai import ChatOpenAI

from .prompts import get_messages
from .prompts.judge_prompt import (
    JUDGE_OURS_BT_MODELING_PROMPT_TEMPLATE,
    JUDGE_OURS_BT_MODELING_WO_CHECKLIST_PROMPT_TEMPLATE,
    JUDGE_OURS_BT_MODELING_MULTIMODAL_PROMPT_TEMPLATE,
    JUDGE_OURS_BT_MODELING_MULTIMODAL_WO_CHECKLIST_PROMPT_TEMPLATE
)
from .prompts.image_utils import image_to_base64_url

MAX_RETRY = 3
RETRY_SLEEP = 5
MODEL_COST_MAPPING = {
    "gpt-4o-mini": {
        "input_token_cost": 0.15,
        "output_token_cost": 0.6
    },
    "gpt-4o": {
        "input_token_cost": 2.5,
        "output_token_cost": 10
    },
}


class Agent(ABC):
    @abstractmethod
    def generate_response(self, inputs: dict) -> str:
        pass

class BaseAgent(Agent):
    def __init__(self, agent_config: dict):
        self.agent_config = agent_config
        self._setup()
    
    def _setup(self):
        use_log_probs = self.agent_config.get("use_log_probs", False)
        if use_log_probs:
            self.llm = ChatOpenAI(
                model=self.agent_config["model_name"], 
                base_url=self.agent_config["base_url"], 
                api_key=self.agent_config["api_key"], 
                temperature=self.agent_config["temperature"],
                timeout=300,
                logprobs=True,
                top_logprobs=10
            )
        else:
            self.llm = ChatOpenAI(
                model=self.agent_config["model_name"], 
                base_url=self.agent_config["base_url"], 
                api_key=self.agent_config["api_key"], 
                temperature=self.agent_config["temperature"],
                timeout=300
            )
        self.temperature = self.agent_config["temperature"]
        self.num_generate = self.agent_config["num_generate"]
        self.use_checklist = self.agent_config.get("use_checklist", False)
        self.use_multimodal = self.agent_config.get("use_multimodal", False)

        # setup cost
        model_cost = MODEL_COST_MAPPING.get(self.agent_config["model_name"], None)
        if model_cost and "api" in self.agent_config["base_url"]:
            self.input_token_cost = model_cost["input_token_cost"]
            self.output_token_cost = model_cost["output_token_cost"]
        else:
            self.input_token_cost = 0.0
            self.output_token_cost = 0.0

    def generate_with_retry(self, model_input, constraint_str_list: list = None):
        total_input_tokens = 0
        total_output_tokens = 0
        if self.temperature == 0:
            response = self.llm.invoke(model_input)
            total_input_tokens += response.response_metadata["token_usage"]["prompt_tokens"]
            total_output_tokens += response.response_metadata["token_usage"]["completion_tokens"]
        else:
            for i in range(MAX_RETRY):
                try:
                    response = self.llm.invoke(model_input)
                    total_input_tokens += response.response_metadata["token_usage"]["prompt_tokens"]
                    total_output_tokens += response.response_metadata["token_usage"]["completion_tokens"]
                    if constraint_str_list:
                        pass_constraint_num = 0
                        for constraint_str in constraint_str_list:
                            if constraint_str in response.content:
                                pass_constraint_num += 1
                        if pass_constraint_num == len(constraint_str_list):
                            break
                        else:
                            print(f"Agent has fomat issue, retry... {i+1}/{MAX_RETRY}")
                            print(response.content)
                    else:
                        break
                except Exception as e:
                    print(f"Agent returned an Error: {e}")
                    response = None
                    time.sleep(RETRY_SLEEP)
        
        cost = self.input_token_cost * total_input_tokens / 1000000 + self.output_token_cost * total_output_tokens / 1000000
        
        if response is None:
            return "", cost
        else:
            return response.content, cost
    
    def prepare_message(self, model_input: dict, prompt_type: str):
        message = []
        return message

    def generate_response(self, model_input: dict, prompt_type: str, constraint_str_list: list = None,):
        total_cost = 0
        response_list = []
        # prepare message
        message = self.prepare_message(model_input, prompt_type)
        # print(message)

        # n sampling
        for i in range(self.num_generate):
            response, cost = self.generate_with_retry(message, constraint_str_list)
            response_list.append(response)
            total_cost += cost
        
        return response_list, total_cost


class GroundingJudgeAgent(BaseAgent):
    def __init__(self, agent_config: dict):
        super().__init__(agent_config)
        self._setup()
    
    def prepare_message(self, model_input: dict, prompt_type):
        message = get_messages(
            input_info=model_input,
            inference_mode="judge_grounding",
            prompt_type=prompt_type,
            use_multimodal=self.use_multimodal,
            text_obs=self.agent_config["text_obs_type"],
            image_obs=self.agent_config["image_obs_type"]
        )
        return message


class ProgressJudgeAgent(BaseAgent):
    def __init__(self, agent_config: dict):
        super().__init__(agent_config)
        self._setup()
    
    def prepare_message(self, model_input: dict, prompt_type):
        if self.agent_config["input_type"]=="text_only":
            use_multimodal = False
            text_obs = self.agent_config["text_obs_type"]
            image_obs = None
        elif self.agent_config["input_type"]=="image_only":
            use_multimodal = True
            text_obs = None
            image_obs = self.agent_config["image_obs_type"]
        elif self.agent_config["input_type"]=="text_image":
            use_multimodal = True
            text_obs = self.agent_config["text_obs_type"]
            image_obs = self.agent_config["image_obs_type"]
        else:
            raise ValueError(f"Invalid input type: {self.agent_config['input_type']}")
        
        if self.agent_config["use_in_progress"]:
            use_in_progress = True
        else:
            use_in_progress = False

        message = get_messages(
            input_info=model_input,
            inference_mode="judge_progress",
            prompt_type=prompt_type,
            use_checklist=self.use_checklist,
            use_multimodal=use_multimodal,
            text_obs=text_obs,
            image_obs=image_obs,
            use_in_progress=use_in_progress
        )
        return message
    
    def add_logprob(self, ori_logprob: float, add_logprob: float):
        if ori_logprob is None:
            return add_logprob
        else:
            ori_prob = math.exp(ori_logprob)
            add_prob = math.exp(add_logprob)
            return math.log(ori_prob + add_prob)
    
    def get_judge_probs(self, logprobs: list):
        # target_judge = {
        #     "yes": [" Yes", "Yes"],
        #     "no": [" No", "No"],
        #     "in": [" In", "In"]
        # }
        target_judge = {
            "yes": [
                " Yes", "ĠYes", "Yes", "ĊYes",
                "Ġyes", "yes", "Ċyes",
                "ĠYES", "YES", "ĊYES",
                "ĠDone", "Done", "ĊDone",
                "ĠCompleted", "Completed", "ĊCompleted",
                "ĠCorrect", "Correct", "ĊCorrect"
            ],
            "no": [
                " No", "ĠNo", "No", "ĊNo",
                "ĠNO", "NO", "ĊNO",
                "ĠNot", "Not", "ĊNot",
                "ĠNone", "None", "ĊNone",
                "ĠNope", "Nope", "ĊNope",
                "ĠUn", "Un", "ĊUn",
                "ĠWrong", "Wrong", "ĊWrong"
            ],
            "in": [
                " In", "ĠIn", "In", "ĊIn",
                "ĠPending", "Pending", "ĊPending",
                "ĠPart", "Part", "ĊPart",
                "ĠPartial", "Partial", "ĊPartial",
                "ĠInProgress", "InProgress", "ĊInProgress"
            ]
        }
        response_str = ""
        judge_probs_list = []
        # print(logprobs)
        for i, log_prob in enumerate(logprobs):
            # Start to find judge string
            if "<answer>" in response_str:
                find_judge_str = None
                for judge_type in target_judge:
                    if log_prob["token"] in target_judge[judge_type]:
                        # print(log_prob)
                        find_judge_str = judge_type
                        break
                if find_judge_str:
                    # print("find judge str")
                    token_judge_dict = {
                        "yes": None,
                        "no": None,
                        "in": None
                    }
                    if "top_logprobs" in log_prob:
                        for token_info in log_prob["top_logprobs"]:
                            for judge_type in target_judge:
                                for judge_str in target_judge[judge_type]:
                                    # if judge_str in token_info["token"] and token_info["logprob"] > token_judge_dict[judge_type]:
                                    #     token_judge_dict[judge_type] = token_info["logprob"]
                                    if judge_str in token_info["token"]:
                                        # print(token_info["logprob"])
                                        token_judge_dict[judge_type] = self.add_logprob(token_judge_dict[judge_type], token_info["logprob"])
                        # for None case
                        for judge_type in token_judge_dict:
                            if token_judge_dict[judge_type] is None:
                                token_judge_dict[judge_type] = float("-inf")
                        judge_probs_list.append(token_judge_dict)
                    else:
                        # for vllm bugs : no top_logprobs
                        for judge_type in token_judge_dict:
                            if judge_type == find_judge_str:
                                token_judge_dict[judge_type] = log_prob["logprob"]
                            else:
                                token_judge_dict[judge_type] = float("-inf")
                        judge_probs_list.append(token_judge_dict)
                    # print(token_judge_dict)
            
            if "</answer>" in response_str:
                break
            
            response_str += log_prob["token"]
        # print(response_str.replace("Ġ", " ").replace("Ċ", "\n"))
        # print(judge_probs_list)
        if len(judge_probs_list) == 0:
            return [{
                "yes": 0.0,
                "no": 0.0,
                "in": 0.0
            }]
        else:
            # convert with softmax
            final_judge_probs_list = []
            for judge_probs in judge_probs_list:
                exp_logprobs = [math.exp(x) for x in [judge_probs["yes"], judge_probs["no"], judge_probs["in"]]]
                sum_exp_logprobs = sum(exp_logprobs)
                softmax_probs = [x / sum_exp_logprobs for x in exp_logprobs]
                final_judge_probs_list.append({
                    "yes": softmax_probs[0], 
                    "no": softmax_probs[1],
                    "in": softmax_probs[2]
                })
            return final_judge_probs_list
    
    def generate_probs(self, model_input: dict, prompt_type: str):
        total_cost = 0
        response_list = []
        # prepare message
        message = self.prepare_message(model_input, prompt_type)
        # print(message)

        for i in range(self.num_generate):
            try:
                response = self.llm.invoke(message)
                total_input_tokens = response.response_metadata["token_usage"]["prompt_tokens"]
                total_output_tokens = response.response_metadata["token_usage"]["completion_tokens"]
                total_cost = self.input_token_cost * total_input_tokens / 1000000 + self.output_token_cost * total_output_tokens / 1000000  
                logprobs = response.response_metadata["logprobs"]["content"]
                response_list.append(
                    {
                        "response": response.content,
                        "judge_probs": self.get_judge_probs(logprobs)
                    }
                )
            except Exception as e:
                print(f"Error: {e}")
                # print(response.response_metadata["logprobs"])
                response_list.append(
                    {
                        "response": response.content,
                        "judge_probs": []
                    }
                )
        return response_list, total_cost


class ChecklistGenerationAgent(BaseAgent):
    def __init__(self, agent_config: dict):
        super().__init__(agent_config)
        self._setup()
    
    def prepare_message(self, model_input: dict, prompt_type):
        message = get_messages(
            input_info=model_input,
            inference_mode="checklist_generation",
            prompt_type=prompt_type
        )
        return message
    

class ClassifierRewardAgent(Agent):
    def __init__(self, url: str, use_checklist: bool = False, use_multimodal: bool = False):
        self.url = url
        self.use_checklist = use_checklist
        self.use_multimodal = use_multimodal

    def _process_multimodal_message(self, prompt: str, image_list: list[str]):
        multimodal_message = []
        text_prompt_prefix = prompt.split("<IMAGE_PLACEHOLDER>")[0]
        text_prompt_suffix = prompt.split("<IMAGE_PLACEHOLDER>")[1]
        multimodal_message = [
            {"type": "text", "text": text_prompt_prefix},
            # {"type": "image_url", "image_url": {"url": image_to_base64_url(image_list[0])}},
            {"type": "image", "image": image_to_base64_url(image_list[0])},
            {"type": "text", "text": text_prompt_suffix}
        ]
        return multimodal_message

    def _make_query(self, user_prompt_template: dict, model_input: dict | list[dict]):
        if self.use_multimodal:
            tmp_user_prompt = user_prompt_template["user"].format(
                **model_input
            )
            user_prompt =  self._process_multimodal_message(tmp_user_prompt, model_input["image_list"])
        else:
            user_prompt = user_prompt_template["user"].format(
                **model_input
            )
        assistant_prompt = user_prompt_template["assistant"].format(
            **model_input
        )
        query = [
            {"role": "user", "content": user_prompt},
            {"role": "assistant", "content": assistant_prompt}
        ]
        return query

    def prepare_message(self, model_input: dict | list[dict], batch: bool = False):
        if self.use_checklist:
            if self.use_multimodal:
                user_prompt_template = JUDGE_OURS_BT_MODELING_MULTIMODAL_PROMPT_TEMPLATE
            else:
                user_prompt_template = JUDGE_OURS_BT_MODELING_PROMPT_TEMPLATE
        else:
            if self.use_multimodal:
                user_prompt_template = JUDGE_OURS_BT_MODELING_MULTIMODAL_WO_CHECKLIST_PROMPT_TEMPLATE
            else:
                user_prompt_template = JUDGE_OURS_BT_MODELING_WO_CHECKLIST_PROMPT_TEMPLATE

        if self.use_multimodal:
            if batch:
                message = [self._make_query(user_prompt_template, input) for input in model_input]
            else:
                message = [self._make_query(user_prompt_template, model_input)]
        else:
            if batch:
                message = {
                    "query": [self._make_query(user_prompt_template, input) for input in model_input],
                    "promptts": []
                }
            else:
                message = {
                    "query": self._make_query(user_prompt_template, model_input),
                    "prompts": []
                }

        return message
    
    def get_rm_scroe(self, message: dict | list):
        headers = {"Content-Type": "application/json"}
        
        try:
            if self.use_multimodal:
                response = requests.post(
                    self.url,
                    json={"messages": message},
                    timeout=600
                )
            else:
                response = requests.post(
                    self.url,
                    headers=headers,
                    data=json.dumps(message),
                    timeout=300
                )
            response.raise_for_status()
            
            response_json = response.json()

            if "rewards" not in response_json:
                print(f"Error: 'rewards' key not found in API response: {response_json}")
                return []
            
            if "get_reward" in self.url:
                # use openrlhf
                return response_json["rewards"]
            elif "pooling" in self.url:
                # use vllm server
                return response_json["reward"]
            else:
                # error
                raise ValueError(f"Invalid URL: {self.url}")

        except requests.exceptions.Timeout:
            print(f"Error: Request timed out to {self.url}")
            return []
        except requests.exceptions.RequestException as e:
            print(f"Error during request to {self.url}: {e}")
            return []
        except json.JSONDecodeError:
            print(f"Error: Failed to decode JSON response from {self.url}")
            return []
        except KeyError as e:
             print(f"Error: Missing key {e} in response from {self.url}")
             return []


    def generate_response(self, model_input: dict | list[dict], batch: bool = False):
        if batch:
            message = self.prepare_message(model_input, batch=True)
        else:
            message = self.prepare_message(model_input)
        rewards = self.get_rm_scroe(message)
        
        return rewards, 0