Spaces:
Sleeping
Sleeping
File size: 18,403 Bytes
498ffec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
from abc import ABC, abstractmethod
import time
import requests
import json
import math
from langsmith import Client
from langchain_openai import ChatOpenAI
from .prompts import get_messages
from .prompts.judge_prompt import (
JUDGE_OURS_BT_MODELING_PROMPT_TEMPLATE,
JUDGE_OURS_BT_MODELING_WO_CHECKLIST_PROMPT_TEMPLATE,
JUDGE_OURS_BT_MODELING_MULTIMODAL_PROMPT_TEMPLATE,
JUDGE_OURS_BT_MODELING_MULTIMODAL_WO_CHECKLIST_PROMPT_TEMPLATE
)
from .prompts.image_utils import image_to_base64_url
MAX_RETRY = 3
RETRY_SLEEP = 5
MODEL_COST_MAPPING = {
"gpt-4o-mini": {
"input_token_cost": 0.15,
"output_token_cost": 0.6
},
"gpt-4o": {
"input_token_cost": 2.5,
"output_token_cost": 10
},
}
class Agent(ABC):
@abstractmethod
def generate_response(self, inputs: dict) -> str:
pass
class BaseAgent(Agent):
def __init__(self, agent_config: dict):
self.agent_config = agent_config
self._setup()
def _setup(self):
use_log_probs = self.agent_config.get("use_log_probs", False)
if use_log_probs:
self.llm = ChatOpenAI(
model=self.agent_config["model_name"],
base_url=self.agent_config["base_url"],
api_key=self.agent_config["api_key"],
temperature=self.agent_config["temperature"],
timeout=300,
logprobs=True,
top_logprobs=10
)
else:
self.llm = ChatOpenAI(
model=self.agent_config["model_name"],
base_url=self.agent_config["base_url"],
api_key=self.agent_config["api_key"],
temperature=self.agent_config["temperature"],
timeout=300
)
self.temperature = self.agent_config["temperature"]
self.num_generate = self.agent_config["num_generate"]
self.use_checklist = self.agent_config.get("use_checklist", False)
self.use_multimodal = self.agent_config.get("use_multimodal", False)
# setup cost
model_cost = MODEL_COST_MAPPING.get(self.agent_config["model_name"], None)
if model_cost and "api" in self.agent_config["base_url"]:
self.input_token_cost = model_cost["input_token_cost"]
self.output_token_cost = model_cost["output_token_cost"]
else:
self.input_token_cost = 0.0
self.output_token_cost = 0.0
def generate_with_retry(self, model_input, constraint_str_list: list = None):
total_input_tokens = 0
total_output_tokens = 0
if self.temperature == 0:
response = self.llm.invoke(model_input)
total_input_tokens += response.response_metadata["token_usage"]["prompt_tokens"]
total_output_tokens += response.response_metadata["token_usage"]["completion_tokens"]
else:
for i in range(MAX_RETRY):
try:
response = self.llm.invoke(model_input)
total_input_tokens += response.response_metadata["token_usage"]["prompt_tokens"]
total_output_tokens += response.response_metadata["token_usage"]["completion_tokens"]
if constraint_str_list:
pass_constraint_num = 0
for constraint_str in constraint_str_list:
if constraint_str in response.content:
pass_constraint_num += 1
if pass_constraint_num == len(constraint_str_list):
break
else:
print(f"Agent has fomat issue, retry... {i+1}/{MAX_RETRY}")
print(response.content)
else:
break
except Exception as e:
print(f"Agent returned an Error: {e}")
response = None
time.sleep(RETRY_SLEEP)
cost = self.input_token_cost * total_input_tokens / 1000000 + self.output_token_cost * total_output_tokens / 1000000
if response is None:
return "", cost
else:
return response.content, cost
def prepare_message(self, model_input: dict, prompt_type: str):
message = []
return message
def generate_response(self, model_input: dict, prompt_type: str, constraint_str_list: list = None,):
total_cost = 0
response_list = []
# prepare message
message = self.prepare_message(model_input, prompt_type)
# print(message)
# n sampling
for i in range(self.num_generate):
response, cost = self.generate_with_retry(message, constraint_str_list)
response_list.append(response)
total_cost += cost
return response_list, total_cost
class GroundingJudgeAgent(BaseAgent):
def __init__(self, agent_config: dict):
super().__init__(agent_config)
self._setup()
def prepare_message(self, model_input: dict, prompt_type):
message = get_messages(
input_info=model_input,
inference_mode="judge_grounding",
prompt_type=prompt_type,
use_multimodal=self.use_multimodal,
text_obs=self.agent_config["text_obs_type"],
image_obs=self.agent_config["image_obs_type"]
)
return message
class ProgressJudgeAgent(BaseAgent):
def __init__(self, agent_config: dict):
super().__init__(agent_config)
self._setup()
def prepare_message(self, model_input: dict, prompt_type):
if self.agent_config["input_type"]=="text_only":
use_multimodal = False
text_obs = self.agent_config["text_obs_type"]
image_obs = None
elif self.agent_config["input_type"]=="image_only":
use_multimodal = True
text_obs = None
image_obs = self.agent_config["image_obs_type"]
elif self.agent_config["input_type"]=="text_image":
use_multimodal = True
text_obs = self.agent_config["text_obs_type"]
image_obs = self.agent_config["image_obs_type"]
else:
raise ValueError(f"Invalid input type: {self.agent_config['input_type']}")
if self.agent_config["use_in_progress"]:
use_in_progress = True
else:
use_in_progress = False
message = get_messages(
input_info=model_input,
inference_mode="judge_progress",
prompt_type=prompt_type,
use_checklist=self.use_checklist,
use_multimodal=use_multimodal,
text_obs=text_obs,
image_obs=image_obs,
use_in_progress=use_in_progress
)
return message
def add_logprob(self, ori_logprob: float, add_logprob: float):
if ori_logprob is None:
return add_logprob
else:
ori_prob = math.exp(ori_logprob)
add_prob = math.exp(add_logprob)
return math.log(ori_prob + add_prob)
def get_judge_probs(self, logprobs: list):
# target_judge = {
# "yes": [" Yes", "Yes"],
# "no": [" No", "No"],
# "in": [" In", "In"]
# }
target_judge = {
"yes": [
" Yes", "ĠYes", "Yes", "ĊYes",
"Ġyes", "yes", "Ċyes",
"ĠYES", "YES", "ĊYES",
"ĠDone", "Done", "ĊDone",
"ĠCompleted", "Completed", "ĊCompleted",
"ĠCorrect", "Correct", "ĊCorrect"
],
"no": [
" No", "ĠNo", "No", "ĊNo",
"ĠNO", "NO", "ĊNO",
"ĠNot", "Not", "ĊNot",
"ĠNone", "None", "ĊNone",
"ĠNope", "Nope", "ĊNope",
"ĠUn", "Un", "ĊUn",
"ĠWrong", "Wrong", "ĊWrong"
],
"in": [
" In", "ĠIn", "In", "ĊIn",
"ĠPending", "Pending", "ĊPending",
"ĠPart", "Part", "ĊPart",
"ĠPartial", "Partial", "ĊPartial",
"ĠInProgress", "InProgress", "ĊInProgress"
]
}
response_str = ""
judge_probs_list = []
# print(logprobs)
for i, log_prob in enumerate(logprobs):
# Start to find judge string
if "<answer>" in response_str:
find_judge_str = None
for judge_type in target_judge:
if log_prob["token"] in target_judge[judge_type]:
# print(log_prob)
find_judge_str = judge_type
break
if find_judge_str:
# print("find judge str")
token_judge_dict = {
"yes": None,
"no": None,
"in": None
}
if "top_logprobs" in log_prob:
for token_info in log_prob["top_logprobs"]:
for judge_type in target_judge:
for judge_str in target_judge[judge_type]:
# if judge_str in token_info["token"] and token_info["logprob"] > token_judge_dict[judge_type]:
# token_judge_dict[judge_type] = token_info["logprob"]
if judge_str in token_info["token"]:
# print(token_info["logprob"])
token_judge_dict[judge_type] = self.add_logprob(token_judge_dict[judge_type], token_info["logprob"])
# for None case
for judge_type in token_judge_dict:
if token_judge_dict[judge_type] is None:
token_judge_dict[judge_type] = float("-inf")
judge_probs_list.append(token_judge_dict)
else:
# for vllm bugs : no top_logprobs
for judge_type in token_judge_dict:
if judge_type == find_judge_str:
token_judge_dict[judge_type] = log_prob["logprob"]
else:
token_judge_dict[judge_type] = float("-inf")
judge_probs_list.append(token_judge_dict)
# print(token_judge_dict)
if "</answer>" in response_str:
break
response_str += log_prob["token"]
# print(response_str.replace("Ġ", " ").replace("Ċ", "\n"))
# print(judge_probs_list)
if len(judge_probs_list) == 0:
return [{
"yes": 0.0,
"no": 0.0,
"in": 0.0
}]
else:
# convert with softmax
final_judge_probs_list = []
for judge_probs in judge_probs_list:
exp_logprobs = [math.exp(x) for x in [judge_probs["yes"], judge_probs["no"], judge_probs["in"]]]
sum_exp_logprobs = sum(exp_logprobs)
softmax_probs = [x / sum_exp_logprobs for x in exp_logprobs]
final_judge_probs_list.append({
"yes": softmax_probs[0],
"no": softmax_probs[1],
"in": softmax_probs[2]
})
return final_judge_probs_list
def generate_probs(self, model_input: dict, prompt_type: str):
total_cost = 0
response_list = []
# prepare message
message = self.prepare_message(model_input, prompt_type)
# print(message)
for i in range(self.num_generate):
try:
response = self.llm.invoke(message)
total_input_tokens = response.response_metadata["token_usage"]["prompt_tokens"]
total_output_tokens = response.response_metadata["token_usage"]["completion_tokens"]
total_cost = self.input_token_cost * total_input_tokens / 1000000 + self.output_token_cost * total_output_tokens / 1000000
logprobs = response.response_metadata["logprobs"]["content"]
response_list.append(
{
"response": response.content,
"judge_probs": self.get_judge_probs(logprobs)
}
)
except Exception as e:
print(f"Error: {e}")
# print(response.response_metadata["logprobs"])
response_list.append(
{
"response": response.content,
"judge_probs": []
}
)
return response_list, total_cost
class ChecklistGenerationAgent(BaseAgent):
def __init__(self, agent_config: dict):
super().__init__(agent_config)
self._setup()
def prepare_message(self, model_input: dict, prompt_type):
message = get_messages(
input_info=model_input,
inference_mode="checklist_generation",
prompt_type=prompt_type
)
return message
class ClassifierRewardAgent(Agent):
def __init__(self, url: str, use_checklist: bool = False, use_multimodal: bool = False):
self.url = url
self.use_checklist = use_checklist
self.use_multimodal = use_multimodal
def _process_multimodal_message(self, prompt: str, image_list: list[str]):
multimodal_message = []
text_prompt_prefix = prompt.split("<IMAGE_PLACEHOLDER>")[0]
text_prompt_suffix = prompt.split("<IMAGE_PLACEHOLDER>")[1]
multimodal_message = [
{"type": "text", "text": text_prompt_prefix},
# {"type": "image_url", "image_url": {"url": image_to_base64_url(image_list[0])}},
{"type": "image", "image": image_to_base64_url(image_list[0])},
{"type": "text", "text": text_prompt_suffix}
]
return multimodal_message
def _make_query(self, user_prompt_template: dict, model_input: dict | list[dict]):
if self.use_multimodal:
tmp_user_prompt = user_prompt_template["user"].format(
**model_input
)
user_prompt = self._process_multimodal_message(tmp_user_prompt, model_input["image_list"])
else:
user_prompt = user_prompt_template["user"].format(
**model_input
)
assistant_prompt = user_prompt_template["assistant"].format(
**model_input
)
query = [
{"role": "user", "content": user_prompt},
{"role": "assistant", "content": assistant_prompt}
]
return query
def prepare_message(self, model_input: dict | list[dict], batch: bool = False):
if self.use_checklist:
if self.use_multimodal:
user_prompt_template = JUDGE_OURS_BT_MODELING_MULTIMODAL_PROMPT_TEMPLATE
else:
user_prompt_template = JUDGE_OURS_BT_MODELING_PROMPT_TEMPLATE
else:
if self.use_multimodal:
user_prompt_template = JUDGE_OURS_BT_MODELING_MULTIMODAL_WO_CHECKLIST_PROMPT_TEMPLATE
else:
user_prompt_template = JUDGE_OURS_BT_MODELING_WO_CHECKLIST_PROMPT_TEMPLATE
if self.use_multimodal:
if batch:
message = [self._make_query(user_prompt_template, input) for input in model_input]
else:
message = [self._make_query(user_prompt_template, model_input)]
else:
if batch:
message = {
"query": [self._make_query(user_prompt_template, input) for input in model_input],
"promptts": []
}
else:
message = {
"query": self._make_query(user_prompt_template, model_input),
"prompts": []
}
return message
def get_rm_scroe(self, message: dict | list):
headers = {"Content-Type": "application/json"}
try:
if self.use_multimodal:
response = requests.post(
self.url,
json={"messages": message},
timeout=600
)
else:
response = requests.post(
self.url,
headers=headers,
data=json.dumps(message),
timeout=300
)
response.raise_for_status()
response_json = response.json()
if "rewards" not in response_json:
print(f"Error: 'rewards' key not found in API response: {response_json}")
return []
if "get_reward" in self.url:
# use openrlhf
return response_json["rewards"]
elif "pooling" in self.url:
# use vllm server
return response_json["reward"]
else:
# error
raise ValueError(f"Invalid URL: {self.url}")
except requests.exceptions.Timeout:
print(f"Error: Request timed out to {self.url}")
return []
except requests.exceptions.RequestException as e:
print(f"Error during request to {self.url}: {e}")
return []
except json.JSONDecodeError:
print(f"Error: Failed to decode JSON response from {self.url}")
return []
except KeyError as e:
print(f"Error: Missing key {e} in response from {self.url}")
return []
def generate_response(self, model_input: dict | list[dict], batch: bool = False):
if batch:
message = self.prepare_message(model_input, batch=True)
else:
message = self.prepare_message(model_input)
rewards = self.get_rm_scroe(message)
return rewards, 0 |