Spaces:
Sleeping
Sleeping
File size: 10,036 Bytes
498ffec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import logging
import os
from typing import Any, List, Tuple
from browsergym.core.action.highlevel import HighLevelActionSet
from browsergym.utils.obs import (
flatten_axtree_to_str,
flatten_dom_to_str,
prune_html,
)
from browsergym.experiments import Agent
from utils import remove_inline_comments_safe, image_to_jpg_base64_url
import openai
logger = logging.getLogger(__name__)
openai.api_key = os.getenv("OPENAI_API_KEY")
class BrowserAgent(Agent):
def obs_preprocessor(self, obs: dict) -> dict:
return {
"chat_messages": obs["chat_messages"],
"som_screenshot": obs["som_screenshot"],
"goal_object": obs["goal_object"],
"last_action": obs["last_action"],
"last_action_error": obs["last_action_error"],
"open_pages_urls": obs["open_pages_urls"],
"open_pages_titles": obs["open_pages_titles"],
"active_page_index": obs["active_page_index"],
"axtree_txt": flatten_axtree_to_str(obs["axtree_object"], filter_visible_only=True, extra_properties=obs['extra_element_properties'], filter_som_only=True),
"pruned_html": prune_html(flatten_dom_to_str(obs["dom_object"])),
}
def __init__(self, model_name: str = "gpt-4o", use_html: bool = False, use_axtree: bool = True, use_screenshot: bool = False):
super().__init__()
logger.info(f"Initializing BrowserAgent with model: {model_name}")
logger.info(f"Observation space: HTML={use_html}, AXTree={use_axtree}, Screenshot={use_screenshot}")
self.model_name = model_name
self.use_html = use_html
self.use_axtree = use_axtree
self.use_screenshot = use_screenshot
if not (use_html or use_axtree):
raise ValueError("Either use_html or use_axtree must be set to True.")
self.openai_client = openai.OpenAI()
self.action_set = HighLevelActionSet(
subsets=["chat", "tab", "nav", "bid", "infeas"],
strict=False,
multiaction=False,
demo_mode="default"
)
self.action_history = []
def get_action(self, obs: dict) -> tuple[str, dict]:
logger.debug("Preparing action request")
system_msgs = [{
"type": "text",
"text": """\
# Instructions
You are a UI Assistant, your goal is to help the user perform tasks using a web browser. You can
communicate with the user via a chat, to which the user gives you instructions and to which you
can send back messages. You have access to a web browser that both you and the user can see,
and with which only you can interact via specific commands.
Review the instructions from the user, the current state of the page and all other information
to find the best possible next action to accomplish your goal. Your answer will be interpreted
and executed by a program, make sure to follow the formatting instructions.
"""
}]
user_msgs = []
# Add chat messages
user_msgs.append({
"type": "text",
"text": "# Chat Messages\n"
})
for msg in obs["chat_messages"]:
if msg["role"] in ("user", "assistant", "infeasible"):
user_msgs.append({
"type": "text",
"text": f"- [{msg['role']}] {msg['message']}\n"
})
logger.debug(f"Added chat message: [{msg['role']}] {msg['message']}")
elif msg["role"] == "user_image":
user_msgs.append({"type": "image_url", "image_url": msg["message"]})
logger.debug("Added user image message")
# Add open tabs info
user_msgs.append({
"type": "text",
"text": "# Currently open tabs\n"
})
for page_index, (page_url, page_title) in enumerate(
zip(obs["open_pages_urls"], obs["open_pages_titles"])
):
user_msgs.append({
"type": "text",
"text": f"""\
Tab {page_index}{" (active tab)" if page_index == obs["active_page_index"] else ""}
Title: {page_title}
URL: {page_url}
"""
})
logger.debug(f"Added tab info: {page_title} ({page_url})")
# Add accessibility tree if enabled
if self.use_axtree:
user_msgs.append({
"type": "text",
"text": f"""\
# Current page Accessibility Tree
{obs["axtree_txt"]}
"""
})
logger.debug("Added accessibility tree")
# Add HTML if enabled
if self.use_html:
user_msgs.append({
"type": "text",
"text": f"""\
# Current page DOM
{obs["pruned_html"]}
"""
})
logger.debug("Added HTML DOM")
# Add screenshot if enabled
if self.use_screenshot:
user_msgs.append({
"type": "text",
"text": "# Current page Screenshot\n"
})
user_msgs.append({
"type": "image_url",
"image_url": {
"url": image_to_jpg_base64_url(obs["som_screenshot"]),
"detail": "auto"
}
})
logger.debug("Added screenshot")
# Add action space description
user_msgs.append({
"type": "text",
"text": f"""\
# Action Space
{self.action_set.describe(with_long_description=False, with_examples=True)}
Here are examples of actions with chain-of-thought reasoning:
I now need to click on the Submit button to send the form. I will use the click action on the button, which has bid 12.
```click("12")```
I found the information requested by the user, I will send it to the chat.
```send_msg_to_user("The price for a 15\\" laptop is 1499 USD.")```
"""
})
# Add action history and errors
if self.action_history:
user_msgs.append({
"type": "text",
"text": "# History of past actions\n"
})
for action in self.action_history:
user_msgs.append({
"type": "text",
"text": f"\n{action}\n"
})
logger.debug(f"Added past action: {action}")
if obs["last_action_error"]:
user_msgs.append({
"type": "text",
"text": f"""\
# Error message from last action
{obs["last_action_error"]}
"""
})
logger.warning(f"Last action error: {obs['last_action_error']}")
# Ask for next action
user_msgs.append({
"type": "text",
"text": """\
# Next action
You will now think step by step and produce your next best action. Reflect on your past actions, any resulting error message, and the current state of the page before deciding on your next action.
Note: You might use 'goto' action if you're in a blank page.
"""
})
# Log the full prompt for debugging
prompt_text_strings = []
for message in system_msgs + user_msgs:
match message["type"]:
case "text":
prompt_text_strings.append(message["text"])
case "image_url":
image_url = message["image_url"]
if isinstance(message["image_url"], dict):
image_url = image_url["url"]
if image_url.startswith("data:image"):
prompt_text_strings.append(
"image_url: " + image_url[:30] + "... (truncated)"
)
else:
prompt_text_strings.append("image_url: " + image_url)
case _:
raise ValueError(
f"Unknown message type {repr(message['type'])} in the task goal."
)
full_prompt_txt = "\n".join(prompt_text_strings)
logger.debug(full_prompt_txt)
# Query OpenAI model
logger.info("Sending request to OpenAI")
response = self.openai_client.chat.completions.create(
model=self.model_name,
messages=[
{"role": "system", "content": system_msgs},
{"role": "user", "content": user_msgs}
],
n=20,
temperature=0.8
)
parses = []
for i, choice in enumerate(response.choices):
response = choice.message.content
try:
parses.append({
'response': response,
'thought': response.split('```')[0].strip(),
'action': remove_inline_comments_safe(response.split('```')[1].strip('`').strip().strip('`').strip()),
})
except Exception as e:
logger.error(f"Error parsing action: {e}")
logger.error(f"Response: {response}")
logger.error(f"Choice: {choice}")
logger.error(f"Index: {i}")
logger.error(f"Response: {response}")
candidates = self.get_top_k_actions(parses)
logger.info(f"Received action from OpenAI: {[cand['action'] for cand in candidates]}")
return candidates, {}
def get_top_k_actions(self, parses, k=3):
count_dict = {}
action_to_parsed = {}
for parsed in parses:
action = parsed["action"]
if action in count_dict:
count_dict[action] += 1
else:
count_dict[action] = 1
action_to_parsed[action] = parsed.copy()
# Get the top_k most frequent actions
sorted_actions = sorted(count_dict.items(), key=lambda x: x[1], reverse=True)
top_k_actions = [action_to_parsed[action] for action, _ in sorted_actions[:k]]
return top_k_actions |