Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import requests | |
import json | |
import time | |
import threading | |
# Load AI models | |
def load_models(): | |
models = { | |
"gpt-3": pipeline("text-generation", model="gpt-3"), | |
"bert-base-uncased": pipeline("text-classification", model="bert-base-uncased"), | |
"roberta-large": pipeline("text-classification", model="roberta-large"), | |
"distilbert-base-uncased": pipeline("text-classification", model="distilbert-base-uncased"), | |
"albert-base-v2": pipeline("text-classification", model="albert-base-v2"), | |
"tinybert": pipeline("text-classification", model="tinybert"), | |
"cybersecurity-bert": pipeline("text-classification", model="cybersecurity-bert"), | |
"malware-detection-bert": pipeline("text-classification", model="malware-detection-bert"), | |
"phishing-detection-bert": pipeline("text-classification", model="phishing-detection-bert") | |
} | |
return models | |
models = load_models() | |
# Define functions to interact with AI models | |
def analyze_text(text, model_name): | |
model = models.get(model_name) | |
if model: | |
return model(text) | |
else: | |
return "Model not found." | |
def analyze_file(file, model_name): | |
content = file.read().decode("utf-8") | |
return analyze_text(content, model_name) | |
# Real-time monitoring and alerting | |
alert_thresholds = { | |
"phishing": 0.8, | |
"malware": 0.8, | |
"anomaly": 0.8 | |
} | |
def monitor_real_time_data(data_stream, model_name): | |
for data in data_stream: | |
result = analyze_text(data, model_name) | |
if result["score"] >= alert_thresholds.get(model_name, 0.8): | |
send_alert(result) | |
def send_alert(alert): | |
# Implement notification methods (e.g., email, SMS, in-app notifications) | |
print(f"Alert: {alert}") | |
# Gradio interface | |
def gradio_interface(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# Cybersecurity AI Platform") | |
with gr.Tab("Text Input"): | |
text_input = gr.Textbox(label="Enter text for analysis") | |
model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select AI Model") | |
text_output = gr.Textbox(label="Analysis Result") | |
text_button = gr.Button("Analyze Text") | |
text_button.click(analyze_text, inputs=[text_input, model_dropdown], outputs=text_output) | |
with gr.Tab("File Upload"): | |
file_input = gr.File(label="Upload file for analysis") | |
model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select AI Model") | |
file_output = gr.Textbox(label="Analysis Result") | |
file_button = gr.Button("Analyze File") | |
file_button.click(analyze_file, inputs=[file_input, model_dropdown], outputs=file_output) | |
with gr.Tab("Real-time Data Stream"): | |
data_stream_input = gr.Textbox(label="Enter real-time data stream URL") | |
model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Select AI Model") | |
real_time_output = gr.Textbox(label="Real-time Monitoring Result") | |
real_time_button = gr.Button("Start Monitoring") | |
real_time_button.click(monitor_real_time_data, inputs=[data_stream_input, model_dropdown], outputs=real_time_output) | |
demo.launch() | |
if __name__ == "__main__": | |
gradio_interface() | |