Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
from huggingface_hub import hf_hub_download | |
import torch | |
import re | |
# Download and load the GOT OCR model | |
got_model_path = hf_hub_download(repo_id="junyeopkim/got_2.0_torch_script", filename="got_2.0_tiny.torchscript") | |
got_model = torch.jit.load(got_model_path) | |
# Load the Surya-OCR model | |
surya_processor = TrOCRProcessor.from_pretrained("suryavarmaaddala/suryaocr") | |
surya_model = VisionEncoderDecoderModel.from_pretrained("suryavarmaaddala/suryaocr") | |
def preprocess_image(image): | |
if isinstance(image, str): | |
image = Image.open(image).convert("RGB") | |
elif isinstance(image, np.ndarray): | |
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
return image | |
def got_ocr(image): | |
image = preprocess_image(image) | |
image = image.resize((224, 224)) | |
input_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255.0 | |
input_tensor = input_tensor.unsqueeze(0) | |
with torch.no_grad(): | |
output = got_model(input_tensor) | |
return output[0].item() | |
def surya_ocr(image): | |
image = preprocess_image(image) | |
pixel_values = surya_processor(image, return_tensors="pt").pixel_values | |
generated_ids = surya_model.generate(pixel_values) | |
generated_text = surya_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text | |
def post_process_text(text): | |
# Simple post-processing to split into lines | |
return '\n'.join(text.split('. ')) | |
def search_text(text, query): | |
try: | |
pattern = re.compile(query, re.IGNORECASE) | |
lines = text.split('\n') | |
matching_lines = [line for line in lines if pattern.search(line)] | |
return '\n'.join(matching_lines) if matching_lines else "No matches found." | |
except re.error: | |
return "Invalid regex pattern. Please try again." | |
def process_and_search(image, search_query): | |
try: | |
got_score = got_ocr(image) | |
surya_text = surya_ocr(image) | |
result = f"GOT OCR Score: {got_score:.4f}\n\nExtracted Text:\n{surya_text}" | |
processed_text = post_process_text(result) | |
search = None | |
if search_query: | |
search = search_text(processed_text, search_query) | |
return image, processed_text, search | |
except Exception as e: | |
return None, f"An error occurred: {str(e)}", None | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="filepath", label="Upload your image") | |
search_query_input = gr.Textbox(label="Enter search query") | |
submit_button = gr.Button("Submit") | |
with gr.Column(scale=2): | |
displayed_image = gr.Image(label="Uploaded Image") | |
ocr_result = gr.Textbox(label="OCR Result", lines=10) | |
search_result = gr.Textbox(label="Search Result", lines=5) | |
submit_button.click( | |
fn=process_and_search, | |
inputs=[image_input, search_query_input], | |
outputs=[displayed_image, ocr_result, search_result] | |
) | |
if __name__ == "__main__": | |
demo.launch() |