import os import tempfile import pytesseract import pdfplumber from PIL import Image from transformers import pipeline from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.docstore.document import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from gtts import gTTS import streamlit as st import re import nltk import random import torch # Import torch # Download NLTK resources if not already downloaded # nltk_data_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data") # os.makedirs(nltk_data_dir, exist_ok=True) # nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_dir, quiet=True) # nltk.data.path.append(nltk_data_dir) nltk_data_dir = "/tmp/nltk_data" os.makedirs(nltk_data_dir, exist_ok=True) nltk.data.path.append(nltk_data_dir) # nltk.download('punkt', download_dir=nltk_data_dir) # nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_dir) nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_dir, quiet=True) nltk.download('punkt', download_dir=nltk_data_dir, quiet=True) nltk.download('punkt_tab', download_dir=nltk_data_dir, quiet=True) # Load models summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=torch.device("cpu")) qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad", device=torch.device("cpu")) embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") vector_dbs = {} # Dictionary to store multiple vector databases, keyed by document title extracted_texts = {} # Dictionary to store extracted text, keyed by document title current_doc_title = None # --------------------------------------------- # Extract text from PDF or Image # --------------------------------------------- def extract_text(uploaded_file): global current_doc_title current_doc_title = uploaded_file.name suffix = uploaded_file.name.lower() with tempfile.NamedTemporaryFile(delete=False) as tmp: tmp.write(uploaded_file.read()) path = tmp.name text = "" if suffix.endswith(".pdf"): with pdfplumber.open(path) as pdf: for page in pdf.pages: page_text = page.extract_text() if page_text: text += page_text + "\n" else: try: text = pytesseract.image_to_string(Image.open(path)) except Exception as e: st.error(f"Error during OCR for {uploaded_file.name}: {e}") text = "" os.remove(path) return text.strip() # --------------------------------------------- # Store Embeddings in FAISS # --------------------------------------------- def store_vector(text): global vector_dbs, current_doc_title text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) docs = text_splitter.create_documents([text]) for doc in docs: doc.metadata = {"title": current_doc_title} # Add document title as metadata if current_doc_title in vector_dbs: vector_dbs[current_doc_title].add_documents(docs) # Append to existing DB else: vector_dbs[current_doc_title] = FAISS.from_documents(docs, embedding_model) # --------------------------------------------- # Summarize Text # --------------------------------------------- def summarize(text): if len(text.split()) < 100: return "Text too short to summarize." chunks = [text[i : i + 1024] for i in range(0, len(text), 1024)] summaries = [] for chunk in chunks: max_len = int(len(chunk.split()) * 0.6) max_len = max(30, min(max_len, 150)) try: summary = summarizer(chunk, max_length=max_len, min_length=20)[0]["summary_text"] summaries.append(summary) except Exception as e: st.error(f"Error during summarization: {e}") return "An error occurred during summarization." return " ".join(summaries) # --------------------------------------------- # Question Answering # --------------------------------------------- def topic_search(question, doc_title=None): global vector_dbs if not vector_dbs: st.warning("Please upload and process a file first in the 'Upload & Extract' tab.") return "" try: if doc_title and doc_title in vector_dbs: retriever = vector_dbs[doc_title].as_retriever(search_kwargs={"k": 3}) else: combined_docs = [] for db in vector_dbs.values(): combined_docs.extend(db.get_relevant_documents(question)) if not combined_docs: return "No relevant information found across uploaded documents." temp_db = FAISS.from_documents(combined_docs, embedding_model) retriever = temp_db.as_retriever(search_kwargs={"k": 3}) relevant_docs = retriever.get_relevant_documents(question) context = "\n\n".join([doc.page_content for doc in relevant_docs]) answer = qa_pipeline(question=question, context=context)["answer"] return answer.strip() except Exception as e: st.error(f"Error during question answering: {e}") return "An error occurred while trying to answer the question." # --------------------------------------------- # Flashcard Generation # --------------------------------------------- def generate_flashcards(text): flashcards = [] seen_terms = set() sentences = nltk.sent_tokenize(text) for i, sent in enumerate(sentences): words = nltk.word_tokenize(sent) tagged_words = nltk.pos_tag(words) potential_terms = [word for word, tag in tagged_words if tag.startswith('NN') or tag.startswith('NP')] for term in potential_terms: if term in seen_terms: continue defining_patterns = [r"\b" + re.escape(term) + r"\b\s+is\s+(?:a|an|the)\s+(.+?)(?:\.|,|\n|$)", r"\b" + re.escape(term) + r"\b\s+refers\s+to\s+(.+?)(?:\.|,|\n|$)", r"\b" + re.escape(term) + r"\b\s+means\s+(.+?)(?:\.|,|\n|$)", r"\b" + re.escape(term) + r"\b,\s+defined\s+as\s+(.+?)(?:\.|,|\n|$)", r"\b" + re.escape(term) + r"\b:\s+(.+?)(?:\.|,|\n|$)"] potential_definitions = [] for pattern in defining_patterns: match = re.search(pattern, sent, re.IGNORECASE) if match and len(match.groups()) >= 1: potential_definitions.append(match.group(1).strip()) for definition in potential_definitions: if 2 <= len(definition.split()) <= 30: flashcards.append({"term": term, "definition": definition}) seen_terms.add(term) break if term not in seen_terms and i > 0: prev_sent = sentences[i-1] defining_patterns_prev = [r"The\s+\b" + re.escape(term) + r"\b\s+is\s+(.+?)(?:\.|,|\n|$)", r"This\s+\b" + re.escape(term) + r"\b\s+refers\s+to\s+(.+?)(?:\.|,|\n|$)", r"It\s+means\s+the\s+\b" + re.escape(term) + r"\b\s+(.+?)(?:\.|,|\n|$)"] for pattern in defining_patterns_prev: match = re.search(pattern, prev_sent, re.IGNORECASE) if match and term in sent and len(match.groups()) >= 1: definition = match.group(1).strip() if 2 <= len(definition.split()) <= 30: flashcards.append({"term": term, "definition": definition}) seen_terms.add(term) break return flashcards # --------------------------------------------- # Text to Speech # --------------------------------------------- def read_aloud(text): try: tts = gTTS(text) audio_path = os.path.join(tempfile.gettempdir(), "summary.mp3") tts.save(audio_path) return audio_path except Exception as e: st.error(f"Error during text-to-speech: {e}") return None # --------------------------------------------- # Quiz Generation and Handling # --------------------------------------------- def generate_quiz_questions(text, num_questions=5): flashcards = generate_flashcards(text) # Reuse flashcard logic for potential terms/definitions if not flashcards: return [] questions = [] used_indices = set() num_available = len(flashcards) while len(questions) < num_questions and len(used_indices) < num_available: index = random.randint(0, num_available - 1) if index in used_indices: continue used_indices.add(index) card = flashcards[index] correct_answer = card['term'] definition = card['definition'] # Generate incorrect answers (very basic for now) incorrect_options = random.sample([c['term'] for i, c in enumerate(flashcards) if i != index], 3) options = [correct_answer] + incorrect_options random.shuffle(options) questions.append({ "question": f"What is the term for: {definition}", "options": options, "correct_answer": correct_answer, "user_answer": None # To store user's choice }) return questions def display_quiz(questions): st.session_state.quiz_questions = questions st.session_state.user_answers = {} st.session_state.quiz_submitted = False for i, q in enumerate(st.session_state.quiz_questions): st.subheader(f"Question {i + 1}:") st.write(q["question"]) st.session_state.user_answers[i] = st.radio(f"Answer for Question {i + 1}", q["options"]) st.button("Submit Quiz", on_click=submit_quiz) def submit_quiz(): st.session_state.quiz_submitted = True def grade_quiz(): if st.session_state.quiz_submitted: score = 0 for i, q in enumerate(st.session_state.quiz_questions): user_answer = st.session_state.user_answers.get(i) if user_answer == q["correct_answer"]: score += 1 st.success(f"Question {i + 1}: Correct!") else: st.error(f"Question {i + 1}: Incorrect. Correct answer was: {q['correct_answer']}") st.write(f"## Your Score: {score} / {len(st.session_state.quiz_questions)}") # --------------------------------------------- # Streamlit Interface with Tabs # --------------------------------------------- st.title("๐Ÿ“˜ AI Study Assistant") tab1, tab2, tab3, tab4, tab5 = st.tabs(["Upload & Extract", "Summarize", "Question Answering", "Interactive Learning", "Quiz"]) with tab1: st.header("๐Ÿ“ค Upload and Extract Text") uploaded_files = st.file_uploader("Upload multiple PDF or Image files", type=["pdf", "png", "jpg", "jpeg"], accept_multiple_files=True) if uploaded_files: for file in uploaded_files: with st.spinner(f"Extracting text from {file.name}..."): extracted_text = extract_text(file) if extracted_text: extracted_texts[file.name] = extracted_text st.success(f"Text Extracted Successfully from {file.name}!") with st.expander(f"View Extracted Text from {file.name}"): st.text_area("Extracted Text", value=extracted_text[:3000], height=400) store_vector(extracted_text) else: st.warning(f"Could not extract any text from {file.name}.") with tab2: st.header("๐Ÿ“ Summarize Text") doc_titles = list(vector_dbs.keys()) if doc_titles: selected_doc_title_summary = st.selectbox("Summarize document:", doc_titles) if st.button("Generate Summary"): if selected_doc_title_summary in extracted_texts: with st.spinner(f"Summarizing {selected_doc_title_summary}..."): summary = summarize(extracted_texts[selected_doc_title_summary]) st.subheader("Summary") st.write(summary) audio_path = read_aloud(summary) if audio_path: st.audio(audio_path) else: st.warning(f"Original text for {selected_doc_title_summary} not found. Please re-upload.") else: st.info("Please upload and extract a file in the 'Upload & Extract' tab first.") with tab3: st.header("โ“ Question Answering") doc_titles = list(vector_dbs.keys()) if doc_titles: doc_title = st.selectbox("Search within document:", ["All Documents"] + doc_titles) question = st.text_input("Ask a question about the content:") if question: with st.spinner("Searching for answer..."): if doc_title == "All Documents": answer = topic_search(question) else: answer = topic_search(question, doc_title=doc_title) if answer: st.subheader("Answer:") st.write(answer) else: st.warning("Could not find an answer in the selected document(s).") else: st.info("Please upload and extract a file in the 'Upload & Extract' tab first.") with tab4: st.header("๐Ÿง  Interactive Learning: Flashcards") doc_titles = list(extracted_texts.keys()) if doc_titles: selected_doc_title_flashcard = st.selectbox("Generate flashcards from document:", doc_titles) if st.button("Generate Flashcards"): if selected_doc_title_flashcard in extracted_texts: with st.spinner(f"Generating flashcards from {selected_doc_title_flashcard}..."): flashcards = generate_flashcards(extracted_texts[selected_doc_title_flashcard]) if flashcards: st.subheader("Flashcards") for i, card in enumerate(flashcards): with st.expander(f"Card {i+1}"): st.markdown(f"*Term:* {card['term']}") st.markdown(f"*Definition:* {card['definition']}") else: st.info("No flashcards could be generated from this document using the current method.") else: st.warning(f"Original text for {selected_doc_title_flashcard} not found. Please re-upload.") else: st.info("Please upload and extract a file in the 'Upload & Extract' tab first.") with tab5: st.header("๐Ÿ“ Quiz Yourself!") doc_titles = list(extracted_texts.keys()) if doc_titles: selected_doc_title_quiz = st.selectbox("Generate quiz from document:", doc_titles) if selected_doc_title_quiz in extracted_texts: text_for_quiz =extracted_texts[selected_doc_title_quiz] if "quiz_questions" not in st.session_state: st.session_state.quiz_questions = generate_quiz_questions(text_for_quiz) if st.session_state.quiz_questions: display_quiz(st.session_state.quiz_questions) if st.session_state.quiz_submitted: grade_quiz() if st.button("Refresh Questions"): st.session_state.quiz_questions = generate_quiz_questions(text_for_quiz) st.session_state.quiz_submitted = False st.session_state.user_answers = {} st.rerun() # Force a re-render to show new questions else: st.info("Could not generate quiz questions from the current document.") else: st.warning(f"Original text for {selected_doc_title_quiz} not found. Please re-upload.") else: st.info("Please upload and extract a file in the 'Upload & Extract'ย tabย first.")