Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +355 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,357 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
""
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import pytesseract
|
4 |
+
import pdfplumber
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import pipeline
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain.docstore.document import Document
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from gtts import gTTS
|
12 |
import streamlit as st
|
13 |
+
import re
|
14 |
+
import nltk
|
15 |
+
import random
|
16 |
+
import torch # Import torch
|
17 |
|
18 |
+
# Download NLTK resources if not already downloaded
|
19 |
+
nltk.download('averaged_perceptron_tagger', quiet=True)
|
20 |
+
nltk.download('punkt', quiet=True)
|
21 |
+
nltk.download('punkt_tab', quiet=True)
|
22 |
+
|
23 |
+
# Load models
|
24 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=torch.device("cpu"))
|
25 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad", device=torch.device("cpu"))
|
26 |
+
embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
27 |
+
|
28 |
+
vector_dbs = {} # Dictionary to store multiple vector databases, keyed by document title
|
29 |
+
extracted_texts = {} # Dictionary to store extracted text, keyed by document title
|
30 |
+
current_doc_title = None
|
31 |
+
|
32 |
+
# ---------------------------------------------
|
33 |
+
# Extract text from PDF or Image
|
34 |
+
# ---------------------------------------------
|
35 |
+
def extract_text(uploaded_file):
|
36 |
+
global current_doc_title
|
37 |
+
current_doc_title = uploaded_file.name
|
38 |
+
suffix = uploaded_file.name.lower()
|
39 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp:
|
40 |
+
tmp.write(uploaded_file.read())
|
41 |
+
path = tmp.name
|
42 |
+
|
43 |
+
text = ""
|
44 |
+
if suffix.endswith(".pdf"):
|
45 |
+
with pdfplumber.open(path) as pdf:
|
46 |
+
for page in pdf.pages:
|
47 |
+
page_text = page.extract_text()
|
48 |
+
if page_text:
|
49 |
+
text += page_text + "\n"
|
50 |
+
else:
|
51 |
+
try:
|
52 |
+
text = pytesseract.image_to_string(Image.open(path))
|
53 |
+
except Exception as e:
|
54 |
+
st.error(f"Error during OCR for {uploaded_file.name}: {e}")
|
55 |
+
text = ""
|
56 |
+
|
57 |
+
os.remove(path)
|
58 |
+
return text.strip()
|
59 |
+
|
60 |
+
# ---------------------------------------------
|
61 |
+
# Store Embeddings in FAISS
|
62 |
+
# ---------------------------------------------
|
63 |
+
def store_vector(text):
|
64 |
+
global vector_dbs, current_doc_title
|
65 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
66 |
+
docs = text_splitter.create_documents([text])
|
67 |
+
for doc in docs:
|
68 |
+
doc.metadata = {"title": current_doc_title} # Add document title as metadata
|
69 |
+
|
70 |
+
if current_doc_title in vector_dbs:
|
71 |
+
vector_dbs[current_doc_title].add_documents(docs) # Append to existing DB
|
72 |
+
else:
|
73 |
+
vector_dbs[current_doc_title] = FAISS.from_documents(docs, embedding_model)
|
74 |
+
|
75 |
+
# ---------------------------------------------
|
76 |
+
# Summarize Text
|
77 |
+
# ---------------------------------------------
|
78 |
+
def summarize(text):
|
79 |
+
if len(text.split()) < 100:
|
80 |
+
return "Text too short to summarize."
|
81 |
+
chunks = [text[i : i + 1024] for i in range(0, len(text), 1024)]
|
82 |
+
summaries = []
|
83 |
+
for chunk in chunks:
|
84 |
+
max_len = int(len(chunk.split()) * 0.6)
|
85 |
+
max_len = max(30, min(max_len, 150))
|
86 |
+
try:
|
87 |
+
summary = summarizer(chunk, max_length=max_len, min_length=20)[0]["summary_text"]
|
88 |
+
summaries.append(summary)
|
89 |
+
except Exception as e:
|
90 |
+
st.error(f"Error during summarization: {e}")
|
91 |
+
return "An error occurred during summarization."
|
92 |
+
return " ".join(summaries)
|
93 |
+
|
94 |
+
# ---------------------------------------------
|
95 |
+
# Question Answering
|
96 |
+
# ---------------------------------------------
|
97 |
+
def topic_search(question, doc_title=None):
|
98 |
+
global vector_dbs
|
99 |
+
if not vector_dbs:
|
100 |
+
st.warning("Please upload and process a file first in the 'Upload & Extract' tab.")
|
101 |
+
return ""
|
102 |
+
|
103 |
+
try:
|
104 |
+
if doc_title and doc_title in vector_dbs:
|
105 |
+
retriever = vector_dbs[doc_title].as_retriever(search_kwargs={"k": 3})
|
106 |
+
else:
|
107 |
+
combined_docs = []
|
108 |
+
for db in vector_dbs.values():
|
109 |
+
combined_docs.extend(db.get_relevant_documents(question))
|
110 |
+
if not combined_docs:
|
111 |
+
return "No relevant information found across uploaded documents."
|
112 |
+
temp_db = FAISS.from_documents(combined_docs, embedding_model)
|
113 |
+
retriever = temp_db.as_retriever(search_kwargs={"k": 3})
|
114 |
+
|
115 |
+
relevant_docs = retriever.get_relevant_documents(question)
|
116 |
+
context = "\n\n".join([doc.page_content for doc in relevant_docs])
|
117 |
+
answer = qa_pipeline(question=question, context=context)["answer"]
|
118 |
+
return answer.strip()
|
119 |
+
except Exception as e:
|
120 |
+
st.error(f"Error during question answering: {e}")
|
121 |
+
return "An error occurred while trying to answer the question."
|
122 |
+
|
123 |
+
# ---------------------------------------------
|
124 |
+
# Flashcard Generation
|
125 |
+
# ---------------------------------------------
|
126 |
+
def generate_flashcards(text):
|
127 |
+
flashcards = []
|
128 |
+
seen_terms = set()
|
129 |
+
sentences = nltk.sent_tokenize(text)
|
130 |
+
|
131 |
+
for i, sent in enumerate(sentences):
|
132 |
+
words = nltk.word_tokenize(sent)
|
133 |
+
tagged_words = nltk.pos_tag(words)
|
134 |
+
|
135 |
+
potential_terms = [word for word, tag in tagged_words if tag.startswith('NN') or tag.startswith('NP')]
|
136 |
+
|
137 |
+
for term in potential_terms:
|
138 |
+
if term in seen_terms:
|
139 |
+
continue
|
140 |
+
|
141 |
+
defining_patterns = [r"\b" + re.escape(term) + r"\b\s+is\s+(?:a|an|the)\s+(.+?)(?:\.|,|\n|$)",
|
142 |
+
r"\b" + re.escape(term) + r"\b\s+refers\s+to\s+(.+?)(?:\.|,|\n|$)",
|
143 |
+
r"\b" + re.escape(term) + r"\b\s+means\s+(.+?)(?:\.|,|\n|$)",
|
144 |
+
r"\b" + re.escape(term) + r"\b,\s+defined\s+as\s+(.+?)(?:\.|,|\n|$)",
|
145 |
+
r"\b" + re.escape(term) + r"\b:\s+(.+?)(?:\.|,|\n|$)"]
|
146 |
+
|
147 |
+
potential_definitions = []
|
148 |
+
for pattern in defining_patterns:
|
149 |
+
match = re.search(pattern, sent, re.IGNORECASE)
|
150 |
+
if match and len(match.groups()) >= 1:
|
151 |
+
potential_definitions.append(match.group(1).strip())
|
152 |
+
|
153 |
+
for definition in potential_definitions:
|
154 |
+
if 2 <= len(definition.split()) <= 30:
|
155 |
+
flashcards.append({"term": term, "definition": definition})
|
156 |
+
seen_terms.add(term)
|
157 |
+
break
|
158 |
+
|
159 |
+
if term not in seen_terms and i > 0:
|
160 |
+
prev_sent = sentences[i-1]
|
161 |
+
defining_patterns_prev = [r"The\s+\b" + re.escape(term) + r"\b\s+is\s+(.+?)(?:\.|,|\n|$)",
|
162 |
+
r"This\s+\b" + re.escape(term) + r"\b\s+refers\s+to\s+(.+?)(?:\.|,|\n|$)",
|
163 |
+
r"It\s+means\s+the\s+\b" + re.escape(term) + r"\b\s+(.+?)(?:\.|,|\n|$)"]
|
164 |
+
for pattern in defining_patterns_prev:
|
165 |
+
match = re.search(pattern, prev_sent, re.IGNORECASE)
|
166 |
+
if match and term in sent and len(match.groups()) >= 1:
|
167 |
+
definition = match.group(1).strip()
|
168 |
+
if 2 <= len(definition.split()) <= 30:
|
169 |
+
flashcards.append({"term": term, "definition": definition})
|
170 |
+
seen_terms.add(term)
|
171 |
+
break
|
172 |
+
|
173 |
+
return flashcards
|
174 |
+
|
175 |
+
# ---------------------------------------------
|
176 |
+
# Text to Speech
|
177 |
+
# ---------------------------------------------
|
178 |
+
def read_aloud(text):
|
179 |
+
try:
|
180 |
+
tts = gTTS(text)
|
181 |
+
audio_path = os.path.join(tempfile.gettempdir(), "summary.mp3")
|
182 |
+
tts.save(audio_path)
|
183 |
+
return audio_path
|
184 |
+
except Exception as e:
|
185 |
+
st.error(f"Error during text-to-speech: {e}")
|
186 |
+
return None
|
187 |
+
|
188 |
+
# ---------------------------------------------
|
189 |
+
# Quiz Generation and Handling
|
190 |
+
# ---------------------------------------------
|
191 |
+
def generate_quiz_questions(text, num_questions=5):
|
192 |
+
flashcards = generate_flashcards(text) # Reuse flashcard logic for potential terms/definitions
|
193 |
+
if not flashcards:
|
194 |
+
return []
|
195 |
+
|
196 |
+
questions = []
|
197 |
+
used_indices = set()
|
198 |
+
num_available = len(flashcards)
|
199 |
+
|
200 |
+
while len(questions) < num_questions and len(used_indices) < num_available:
|
201 |
+
index = random.randint(0, num_available - 1)
|
202 |
+
if index in used_indices:
|
203 |
+
continue
|
204 |
+
used_indices.add(index)
|
205 |
+
card = flashcards[index]
|
206 |
+
correct_answer = card['term']
|
207 |
+
definition = card['definition']
|
208 |
+
|
209 |
+
# Generate incorrect answers (very basic for now)
|
210 |
+
incorrect_options = random.sample([c['term'] for i, c in enumerate(flashcards) if i != index], 3)
|
211 |
+
options = [correct_answer] + incorrect_options
|
212 |
+
random.shuffle(options)
|
213 |
+
|
214 |
+
questions.append({
|
215 |
+
"question": f"What is the term for: {definition}",
|
216 |
+
"options": options,
|
217 |
+
"correct_answer": correct_answer,
|
218 |
+
"user_answer": None # To store user's choice
|
219 |
+
})
|
220 |
+
|
221 |
+
return questions
|
222 |
+
|
223 |
+
def display_quiz(questions):
|
224 |
+
st.session_state.quiz_questions = questions
|
225 |
+
st.session_state.user_answers = {}
|
226 |
+
st.session_state.quiz_submitted = False
|
227 |
+
for i, q in enumerate(st.session_state.quiz_questions):
|
228 |
+
st.subheader(f"Question {i + 1}:")
|
229 |
+
st.write(q["question"])
|
230 |
+
st.session_state.user_answers[i] = st.radio(f"Answer for Question {i + 1}", q["options"])
|
231 |
+
st.button("Submit Quiz", on_click=submit_quiz)
|
232 |
+
|
233 |
+
def submit_quiz():
|
234 |
+
st.session_state.quiz_submitted = True
|
235 |
+
|
236 |
+
def grade_quiz():
|
237 |
+
if st.session_state.quiz_submitted:
|
238 |
+
score = 0
|
239 |
+
for i, q in enumerate(st.session_state.quiz_questions):
|
240 |
+
user_answer = st.session_state.user_answers.get(i)
|
241 |
+
if user_answer == q["correct_answer"]:
|
242 |
+
score += 1
|
243 |
+
st.success(f"Question {i + 1}: Correct!")
|
244 |
+
else:
|
245 |
+
st.error(f"Question {i + 1}: Incorrect. Correct answer was: {q['correct_answer']}")
|
246 |
+
st.write(f"## Your Score: {score} / {len(st.session_state.quiz_questions)}")
|
247 |
+
|
248 |
+
# ---------------------------------------------
|
249 |
+
# Streamlit Interface with Tabs
|
250 |
+
# ---------------------------------------------
|
251 |
+
st.title("📘 AI Study Assistant")
|
252 |
+
|
253 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Upload & Extract", "Summarize", "Question Answering", "Interactive Learning", "Quiz"])
|
254 |
+
|
255 |
+
with tab1:
|
256 |
+
st.header("📤 Upload and Extract Text")
|
257 |
+
uploaded_files = st.file_uploader("Upload multiple PDF or Image files", type=["pdf", "png", "jpg", "jpeg"], accept_multiple_files=True)
|
258 |
+
if uploaded_files:
|
259 |
+
for file in uploaded_files:
|
260 |
+
with st.spinner(f"Extracting text from {file.name}..."):
|
261 |
+
extracted_text = extract_text(file)
|
262 |
+
if extracted_text:
|
263 |
+
extracted_texts[file.name] = extracted_text
|
264 |
+
st.success(f"Text Extracted Successfully from {file.name}!")
|
265 |
+
with st.expander(f"View Extracted Text from {file.name}"):
|
266 |
+
st.text_area("Extracted Text", value=extracted_text[:3000], height=400)
|
267 |
+
store_vector(extracted_text)
|
268 |
+
else:
|
269 |
+
st.warning(f"Could not extract any text from {file.name}.")
|
270 |
+
|
271 |
+
with tab2:
|
272 |
+
st.header("📝 Summarize Text")
|
273 |
+
doc_titles = list(vector_dbs.keys())
|
274 |
+
if doc_titles:
|
275 |
+
selected_doc_title_summary = st.selectbox("Summarize document:", doc_titles)
|
276 |
+
if st.button("Generate Summary"):
|
277 |
+
if selected_doc_title_summary in extracted_texts:
|
278 |
+
with st.spinner(f"Summarizing {selected_doc_title_summary}..."):
|
279 |
+
summary = summarize(extracted_texts[selected_doc_title_summary])
|
280 |
+
st.subheader("Summary")
|
281 |
+
st.write(summary)
|
282 |
+
audio_path = read_aloud(summary)
|
283 |
+
if audio_path:
|
284 |
+
st.audio(audio_path)
|
285 |
+
else:
|
286 |
+
st.warning(f"Original text for {selected_doc_title_summary} not found. Please re-upload.")
|
287 |
+
else:
|
288 |
+
st.info("Please upload and extract a file in the 'Upload & Extract' tab first.")
|
289 |
+
|
290 |
+
with tab3:
|
291 |
+
st.header("❓ Question Answering")
|
292 |
+
doc_titles = list(vector_dbs.keys())
|
293 |
+
if doc_titles:
|
294 |
+
doc_title = st.selectbox("Search within document:", ["All Documents"] + doc_titles)
|
295 |
+
question = st.text_input("Ask a question about the content:")
|
296 |
+
if question:
|
297 |
+
with st.spinner("Searching for answer..."):
|
298 |
+
if doc_title == "All Documents":
|
299 |
+
answer = topic_search(question)
|
300 |
+
else:
|
301 |
+
answer = topic_search(question, doc_title=doc_title)
|
302 |
+
if answer:
|
303 |
+
st.subheader("Answer:")
|
304 |
+
st.write(answer)
|
305 |
+
else:
|
306 |
+
st.warning("Could not find an answer in the selected document(s).")
|
307 |
+
else:
|
308 |
+
st.info("Please upload and extract a file in the 'Upload & Extract' tab first.")
|
309 |
+
|
310 |
+
with tab4:
|
311 |
+
st.header("🧠 Interactive Learning: Flashcards")
|
312 |
+
doc_titles = list(extracted_texts.keys())
|
313 |
+
if doc_titles:
|
314 |
+
selected_doc_title_flashcard = st.selectbox("Generate flashcards from document:", doc_titles)
|
315 |
+
if st.button("Generate Flashcards"):
|
316 |
+
if selected_doc_title_flashcard in extracted_texts:
|
317 |
+
with st.spinner(f"Generating flashcards from {selected_doc_title_flashcard}..."):
|
318 |
+
flashcards = generate_flashcards(extracted_texts[selected_doc_title_flashcard])
|
319 |
+
if flashcards:
|
320 |
+
st.subheader("Flashcards")
|
321 |
+
for i, card in enumerate(flashcards):
|
322 |
+
with st.expander(f"Card {i+1}"):
|
323 |
+
st.markdown(f"*Term:* {card['term']}")
|
324 |
+
st.markdown(f"*Definition:* {card['definition']}")
|
325 |
+
else:
|
326 |
+
st.info("No flashcards could be generated from this document using the current method.")
|
327 |
+
else:
|
328 |
+
st.warning(f"Original text for {selected_doc_title_flashcard} not found. Please re-upload.")
|
329 |
+
else:
|
330 |
+
st.info("Please upload and extract a file in the 'Upload & Extract' tab first.")
|
331 |
+
|
332 |
+
with tab5:
|
333 |
+
st.header("📝 Quiz Yourself!")
|
334 |
+
doc_titles = list(extracted_texts.keys())
|
335 |
+
if doc_titles:
|
336 |
+
selected_doc_title_quiz = st.selectbox("Generate quiz from document:", doc_titles)
|
337 |
+
if selected_doc_title_quiz in extracted_texts:
|
338 |
+
text_for_quiz =extracted_texts[selected_doc_title_quiz]
|
339 |
+
if "quiz_questions" not in st.session_state:
|
340 |
+
st.session_state.quiz_questions = generate_quiz_questions(text_for_quiz)
|
341 |
+
|
342 |
+
if st.session_state.quiz_questions:
|
343 |
+
display_quiz(st.session_state.quiz_questions)
|
344 |
+
if st.session_state.quiz_submitted:
|
345 |
+
grade_quiz()
|
346 |
+
|
347 |
+
if st.button("Refresh Questions"):
|
348 |
+
st.session_state.quiz_questions = generate_quiz_questions(text_for_quiz)
|
349 |
+
st.session_state.quiz_submitted = False
|
350 |
+
st.session_state.user_answers = {}
|
351 |
+
st.rerun() # Force a re-render to show new questions
|
352 |
+
else:
|
353 |
+
st.info("Could not generate quiz questions from the current document.")
|
354 |
+
else:
|
355 |
+
st.warning(f"Original text for {selected_doc_title_quiz} not found. Please re-upload.")
|
356 |
+
else:
|
357 |
+
st.info("Please upload and extract a file in the 'Upload & Extract' tab first.")
|