dummy_test / src /streamlit_app.py
inam09's picture
Update src/streamlit_app.py
cab6c1e verified
raw
history blame
16.6 kB
import os
import tempfile
import pytesseract
import pdfplumber
from PIL import Image
from transformers import pipeline
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from gtts import gTTS
import streamlit as st
import re
import nltk
import random
import torch # Import torch
# Download NLTK resources if not already downloaded
# nltk_data_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
# os.makedirs(nltk_data_dir, exist_ok=True)
# nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_dir, quiet=True)
# nltk.data.path.append(nltk_data_dir)
# nltk_data_dir = "/tmp/nltk_data"
# os.makedirs(nltk_data_dir, exist_ok=True)
# nltk.data.path.append(nltk_data_dir)
# # nltk.download('punkt', download_dir=nltk_data_dir)
# # nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_dir)
# nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_dir, quiet=True)
# nltk.download('punkt', download_dir=nltk_data_dir, quiet=True)
# # Load models
# summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
summarizer = pipeline("summarization", model="google/pegasus-xsum")
# qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad", device=torch.device("cpu"))
qa_pipeline = pipeline("question-answering", model="deepset/tinyroberta-squad2", device=torch.device("cpu"))
# embedding_model = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vector_dbs = {} # Dictionary to store multiple vector databases, keyed by document title
extracted_texts = {} # Dictionary to store extracted text, keyed by document title
current_doc_title = None
# # ---------------------------------------------
# # Extract text from PDF or Image
# # ---------------------------------------------
# def extract_text(uploaded_file):
# global current_doc_title
# current_doc_title = uploaded_file.name
# suffix = uploaded_file.name.lower()
# with tempfile.NamedTemporaryFile(delete=False) as tmp:
# tmp.write(uploaded_file.read())
# path = tmp.name
# text = ""
# if suffix.endswith(".pdf"):
# with pdfplumber.open(path) as pdf:
# for page in pdf.pages:
# page_text = page.extract_text()
# if page_text:
# text += page_text + "\n"
# else:
# try:
# text = pytesseract.image_to_string(Image.open(path))
# except Exception as e:
# st.error(f"Error during OCR for {uploaded_file.name}: {e}")
# text = ""
# os.remove(path)
# return text.strip()
# # ---------------------------------------------
# # Store Embeddings in FAISS
# # ---------------------------------------------
# def store_vector(text):
# global vector_dbs, current_doc_title
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
# docs = text_splitter.create_documents([text])
# for doc in docs:
# doc.metadata = {"title": current_doc_title} # Add document title as metadata
# if current_doc_title in vector_dbs:
# vector_dbs[current_doc_title].add_documents(docs) # Append to existing DB
# else:
# vector_dbs[current_doc_title] = FAISS.from_documents(docs, embedding_model)
# # ---------------------------------------------
# # Summarize Text
# # ---------------------------------------------
# def summarize(text):
# if len(text.split()) < 100:
# return "Text too short to summarize."
# chunks = [text[i : i + 1024] for i in range(0, len(text), 1024)]
# summaries = []
# for chunk in chunks:
# max_len = int(len(chunk.split()) * 0.6)
# max_len = max(30, min(max_len, 150))
# try:
# summary = summarizer(chunk, max_length=max_len, min_length=20)[0]["summary_text"]
# summaries.append(summary)
# except Exception as e:
# st.error(f"Error during summarization: {e}")
# return "An error occurred during summarization."
# return " ".join(summaries)
# # ---------------------------------------------
# # Question Answering
# # ---------------------------------------------
# def topic_search(question, doc_title=None):
# global vector_dbs
# if not vector_dbs:
# st.warning("Please upload and process a file first in the 'Upload & Extract' tab.")
# return ""
# try:
# if doc_title and doc_title in vector_dbs:
# retriever = vector_dbs[doc_title].as_retriever(search_kwargs={"k": 3})
# else:
# combined_docs = []
# for db in vector_dbs.values():
# combined_docs.extend(db.get_relevant_documents(question))
# if not combined_docs:
# return "No relevant information found across uploaded documents."
# temp_db = FAISS.from_documents(combined_docs, embedding_model)
# retriever = temp_db.as_retriever(search_kwargs={"k": 3})
# relevant_docs = retriever.get_relevant_documents(question)
# context = "\n\n".join([doc.page_content for doc in relevant_docs])
# answer = qa_pipeline(question=question, context=context)["answer"]
# return answer.strip()
# except Exception as e:
# st.error(f"Error during question answering: {e}")
# return "An error occurred while trying to answer the question."
# # ---------------------------------------------
# # Flashcard Generation
# # ---------------------------------------------
# def generate_flashcards(text):
# flashcards = []
# seen_terms = set()
# sentences = nltk.sent_tokenize(text)
# for i, sent in enumerate(sentences):
# words = nltk.word_tokenize(sent)
# tagged_words = nltk.pos_tag(words)
# potential_terms = [word for word, tag in tagged_words if tag.startswith('NN') or tag.startswith('NP')]
# for term in potential_terms:
# if term in seen_terms:
# continue
# defining_patterns = [r"\b" + re.escape(term) + r"\b\s+is\s+(?:a|an|the)\s+(.+?)(?:\.|,|\n|$)",
# r"\b" + re.escape(term) + r"\b\s+refers\s+to\s+(.+?)(?:\.|,|\n|$)",
# r"\b" + re.escape(term) + r"\b\s+means\s+(.+?)(?:\.|,|\n|$)",
# r"\b" + re.escape(term) + r"\b,\s+defined\s+as\s+(.+?)(?:\.|,|\n|$)",
# r"\b" + re.escape(term) + r"\b:\s+(.+?)(?:\.|,|\n|$)"]
# potential_definitions = []
# for pattern in defining_patterns:
# match = re.search(pattern, sent, re.IGNORECASE)
# if match and len(match.groups()) >= 1:
# potential_definitions.append(match.group(1).strip())
# for definition in potential_definitions:
# if 2 <= len(definition.split()) <= 30:
# flashcards.append({"term": term, "definition": definition})
# seen_terms.add(term)
# break
# if term not in seen_terms and i > 0:
# prev_sent = sentences[i-1]
# defining_patterns_prev = [r"The\s+\b" + re.escape(term) + r"\b\s+is\s+(.+?)(?:\.|,|\n|$)",
# r"This\s+\b" + re.escape(term) + r"\b\s+refers\s+to\s+(.+?)(?:\.|,|\n|$)",
# r"It\s+means\s+the\s+\b" + re.escape(term) + r"\b\s+(.+?)(?:\.|,|\n|$)"]
# for pattern in defining_patterns_prev:
# match = re.search(pattern, prev_sent, re.IGNORECASE)
# if match and term in sent and len(match.groups()) >= 1:
# definition = match.group(1).strip()
# if 2 <= len(definition.split()) <= 30:
# flashcards.append({"term": term, "definition": definition})
# seen_terms.add(term)
# break
# return flashcards
# # ---------------------------------------------
# # Text to Speech
# # ---------------------------------------------
# def read_aloud(text):
# try:
# tts = gTTS(text)
# audio_path = os.path.join(tempfile.gettempdir(), "summary.mp3")
# tts.save(audio_path)
# return audio_path
# except Exception as e:
# st.error(f"Error during text-to-speech: {e}")
# return None
# # ---------------------------------------------
# # Quiz Generation and Handling
# # ---------------------------------------------
# def generate_quiz_questions(text, num_questions=5):
# flashcards = generate_flashcards(text) # Reuse flashcard logic for potential terms/definitions
# if not flashcards:
# return []
# questions = []
# used_indices = set()
# num_available = len(flashcards)
# while len(questions) < num_questions and len(used_indices) < num_available:
# index = random.randint(0, num_available - 1)
# if index in used_indices:
# continue
# used_indices.add(index)
# card = flashcards[index]
# correct_answer = card['term']
# definition = card['definition']
# # Generate incorrect answers (very basic for now)
# incorrect_options = random.sample([c['term'] for i, c in enumerate(flashcards) if i != index], 3)
# options = [correct_answer] + incorrect_options
# random.shuffle(options)
# questions.append({
# "question": f"What is the term for: {definition}",
# "options": options,
# "correct_answer": correct_answer,
# "user_answer": None # To store user's choice
# })
# return questions
# def display_quiz(questions):
# st.session_state.quiz_questions = questions
# st.session_state.user_answers = {}
# st.session_state.quiz_submitted = False
# for i, q in enumerate(st.session_state.quiz_questions):
# st.subheader(f"Question {i + 1}:")
# st.write(q["question"])
# st.session_state.user_answers[i] = st.radio(f"Answer for Question {i + 1}", q["options"])
# st.button("Submit Quiz", on_click=submit_quiz)
# def submit_quiz():
# st.session_state.quiz_submitted = True
# def grade_quiz():
# if st.session_state.quiz_submitted:
# score = 0
# for i, q in enumerate(st.session_state.quiz_questions):
# user_answer = st.session_state.user_answers.get(i)
# if user_answer == q["correct_answer"]:
# score += 1
# st.success(f"Question {i + 1}: Correct!")
# else:
# st.error(f"Question {i + 1}: Incorrect. Correct answer was: {q['correct_answer']}")
# st.write(f"## Your Score: {score} / {len(st.session_state.quiz_questions)}")
# ---------------------------------------------
# Streamlit Interface with Tabs
# ---------------------------------------------
st.title("📘 AI Study Assistant")
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Upload & Extract", "Summarize", "Question Answering", "Interactive Learning", "Quiz"])
with tab1:
st.header("📤 Upload and Extract Text")
uploaded_files = st.file_uploader("Upload multiple PDF or Image files", type=["pdf", "png", "jpg", "jpeg"], accept_multiple_files=True)
if uploaded_files:
for file in uploaded_files:
with st.spinner(f"Extracting text from {file.name}..."):
extracted_text = extract_text(file)
if extracted_text:
extracted_texts[file.name] = extracted_text
st.success(f"Text Extracted Successfully from {file.name}!")
with st.expander(f"View Extracted Text from {file.name}"):
st.text_area("Extracted Text", value=extracted_text[:3000], height=400)
store_vector(extracted_text)
else:
st.warning(f"Could not extract any text from {file.name}.")
with tab2:
st.header("📝 Summarize Text")
doc_titles = list(vector_dbs.keys())
if doc_titles:
selected_doc_title_summary = st.selectbox("Summarize document:", doc_titles)
if st.button("Generate Summary"):
if selected_doc_title_summary in extracted_texts:
with st.spinner(f"Summarizing {selected_doc_title_summary}..."):
summary = summarize(extracted_texts[selected_doc_title_summary])
st.subheader("Summary")
st.write(summary)
audio_path = read_aloud(summary)
if audio_path:
st.audio(audio_path)
else:
st.warning(f"Original text for {selected_doc_title_summary} not found. Please re-upload.")
else:
st.info("Please upload and extract a file in the 'Upload & Extract' tab first.")
# with tab3:
# st.header("❓ Question Answering")
# doc_titles = list(vector_dbs.keys())
# if doc_titles:
# doc_title = st.selectbox("Search within document:", ["All Documents"] + doc_titles)
# question = st.text_input("Ask a question about the content:")
# if question:
# with st.spinner("Searching for answer..."):
# if doc_title == "All Documents":
# answer = topic_search(question)
# else:
# answer = topic_search(question, doc_title=doc_title)
# if answer:
# st.subheader("Answer:")
# st.write(answer)
# else:
# st.warning("Could not find an answer in the selected document(s).")
# else:
# st.info("Please upload and extract a file in the 'Upload & Extract' tab first.")
# with tab4:
# st.header("🧠 Interactive Learning: Flashcards")
# doc_titles = list(extracted_texts.keys())
# if doc_titles:
# selected_doc_title_flashcard = st.selectbox("Generate flashcards from document:", doc_titles)
# if st.button("Generate Flashcards"):
# if selected_doc_title_flashcard in extracted_texts:
# with st.spinner(f"Generating flashcards from {selected_doc_title_flashcard}..."):
# flashcards = generate_flashcards(extracted_texts[selected_doc_title_flashcard])
# if flashcards:
# st.subheader("Flashcards")
# for i, card in enumerate(flashcards):
# with st.expander(f"Card {i+1}"):
# st.markdown(f"*Term:* {card['term']}")
# st.markdown(f"*Definition:* {card['definition']}")
# else:
# st.info("No flashcards could be generated from this document using the current method.")
# else:
# st.warning(f"Original text for {selected_doc_title_flashcard} not found. Please re-upload.")
# else:
# st.info("Please upload and extract a file in the 'Upload & Extract' tab first.")
# with tab5:
# st.header("📝 Quiz Yourself!")
# doc_titles = list(extracted_texts.keys())
# if doc_titles:
# selected_doc_title_quiz = st.selectbox("Generate quiz from document:", doc_titles)
# if selected_doc_title_quiz in extracted_texts:
# text_for_quiz =extracted_texts[selected_doc_title_quiz]
# if "quiz_questions" not in st.session_state:
# st.session_state.quiz_questions = generate_quiz_questions(text_for_quiz)
# if st.session_state.quiz_questions:
# display_quiz(st.session_state.quiz_questions)
# if st.session_state.quiz_submitted:
# grade_quiz()
# if st.button("Refresh Questions"):
# st.session_state.quiz_questions = generate_quiz_questions(text_for_quiz)
# st.session_state.quiz_submitted = False
# st.session_state.user_answers = {}
# st.rerun() # Force a re-render to show new questions
# else:
# st.info("Could not generate quiz questions from the current document.")
# else:
# st.warning(f"Original text for {selected_doc_title_quiz} not found. Please re-upload.")
# else:
# st.info("Please upload and extract a file in the 'Upload & Extract' tab first.")