#https://www.freecodecamp.org/news/how-to-setup-virtual-environments-in-python/ #https://www.youtube.com/watch?v=qbLc5a9jdXo&ab_channel=CalebCurry #https://stackoverflow.com/questions/26368306/export-is-not-recognized-as-an-internal-or-external-command #python3 -m venv .venv #source .venv/bin/activate # #pip freeze > requirements.txt #$env:FLASK_APP="application.py" #set FLASK_APP=application.py # export FLASK_APP=application.py #set FLASK_ENV=development #export FLASK_ENV=production #flask run #flask run --host=0.0.0.0 #pip install torchvision from flask import Flask, request, jsonify from flask_cors import CORS import pandas import threading import uuid import time from human_text_detect import detect_human_text app = Flask(__name__) CORS(app) task_results = {} @app.route('/') def index(): return 'Hello' def process_analysis(task_id, text, model_name, topic): print(f"Processing task: {task_id}") # Validate data print('Validate data') answer = validate_data(text, model_name, topic) if answer != '': task_results[task_id] = {'status': 'error', 'error': answer} return topic = check_topic(topic) hcRelativeToThreshold, df_sentences = detect_human_text(model_name, topic, text) message = 'Edits found in the text' if hcRelativeToThreshold >= 0 else 'We couldn\'t find edits in the text' sentences = [ { "sentence": row["sentence"], "lppt": row["response"], "pvalue": row["pvalue"], "color": "#f5aca4" if row["pvalue"] < 0.05 else "" } for _, row in df_sentences.iterrows() ] # Store the result task_results[task_id] = {'status': 'completed', 'message': message, 'hcRelativeToThreshold': hcRelativeToThreshold, 'sentences': sentences} @app.route('/detectHumanInAIText/checkText', methods=['POST']) def check_text(): # Get data print('Get data') data = request.get_json() text = data.get('text') model_name = data.get('model') topic = data.get('topic') # Generate a unique taskId task_id = str(uuid.uuid4()) # Start processing in a separate thread thread = threading.Thread(target=process_analysis, args=(task_id, text, model_name, topic)) thread.start() # Return taskId immediately return jsonify({'taskId': task_id}), 202 @app.route('/detectHumanInAIText/getAnalyzeResults', methods=['GET']) def get_results(): task_id = request.args.get('taskId') if not task_id: return jsonify({'error': 'Missing taskId parameter'}), 400 if task_id not in task_results: return jsonify({'status': 'pending'}), 202 return jsonify(task_results.pop(task_id)), 200 def validate_data(text, model_name, topic): if text is None or text == '': return 'Text is missing' if model_name is None or model_name == '': return 'Model name is missing' if topic is None or topic == '': return 'Topic is missing' if model_name not in ['GPT2XL', 'PHI2']: return f'Model {model_name} not supported' if check_topic(topic) == None: return f'Topic {topic} not supported' return '' def check_topic(topic): topic_dict = { 'empirical': 'empirical', 'figures': 'characters', 'landmarks': 'locations', 'nature': 'nature', 'games': 'video_games_series_movies', 'wars': 'war' } return topic_dict[topic] if topic in topic_dict else None