b-AI / app.py
ianeksdi's picture
Update app.py
faf8c49 verified
import gradio as gr
from huggingface_hub import InferenceClient
import requests
from deep_translator import GoogleTranslator
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
def translate_to_english(text: str) -> str:
try:
return GoogleTranslator(source='auto', target='en').translate(text)
except Exception:
return text
def translate_to_bisaya(text: str) -> str:
try:
return GoogleTranslator(source='auto', target='ceb').translate(text)
except Exception:
return text
def get_internet_data(query: str) -> str:
"""
Uses Qwant's free search API to fetch a snippet based on the query.
"""
url = "https://api.qwant.com/v3/search/web"
params = {
"q": query,
"count": 10,
"offset": 0,
"t": "web",
"safesearch": 1,
"locale": "en_US",
"uiv": 4,
}
try:
response = requests.get(url, params=params, timeout=5)
response.raise_for_status()
data = response.json()
items = data.get("data", {}).get("result", {}).get("items", [])
if items:
snippet = items[0].get("desc", "")
if not snippet:
snippet = items[0].get("title", "")
else:
snippet = "Wala koy nakuha nga impormasyon gikan sa Qwant search."
except Exception:
snippet = "Naay problema sa pagkuha sa impormasyon gikan sa Qwant search."
return snippet
def respond(message, history: list[tuple[str, str]]):
# Step 1: Translate the query from Bisaya to English.
english_query = translate_to_english(message)
# Step 2: Search the web using Qwant's API with the translated query.
search_result = get_internet_data(english_query)
# Step 3: Translate the search result back to Bisaya.
bisaya_search_result = translate_to_bisaya(search_result)
# Enrich the original query with the translated search result.
enriched_message = (
f"{message}\n\nMga resulta gikan sa internet (isinalin sa bisaya): {bisaya_search_result}"
)
system_message = (
"Ikaw usa ka buotan nga Chatbot. Tubaga lang sa binisaya. "
"Gamiton ang bag-ong kasayuran nga nakuha gikan sa internet. "
"Ayaw og gamit ug English nga pinulungan."
)
max_tokens = 4096
temperature = 0.6
top_p = 0.95
messages = [{"role": "system", "content": system_message}]
for user_text, assistant_text in history:
if user_text:
messages.append({"role": "user", "content": user_text})
if assistant_text:
messages.append({"role": "assistant", "content": assistant_text})
messages.append({"role": "user", "content": enriched_message})
# Get the complete response from the model.
full_response = ""
for token_message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = token_message.choices[0].delta.get("content", "")
if not token:
break
full_response += token
if len(full_response) > 3000:
break
# Translate the final response to Bisaya.
final_response = translate_to_bisaya(full_response)
yield final_response
demo = gr.ChatInterface(respond)
if __name__ == "__main__":
demo.launch()