|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import requests |
|
from deep_translator import GoogleTranslator |
|
|
|
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407") |
|
|
|
def translate_to_english(text: str) -> str: |
|
try: |
|
return GoogleTranslator(source='auto', target='en').translate(text) |
|
except Exception: |
|
return text |
|
|
|
def translate_to_bisaya(text: str) -> str: |
|
try: |
|
return GoogleTranslator(source='auto', target='ceb').translate(text) |
|
except Exception: |
|
return text |
|
|
|
def get_internet_data(query: str) -> str: |
|
""" |
|
Uses Qwant's free search API to fetch a snippet based on the query. |
|
""" |
|
url = "https://api.qwant.com/v3/search/web" |
|
params = { |
|
"q": query, |
|
"count": 10, |
|
"offset": 0, |
|
"t": "web", |
|
"safesearch": 1, |
|
"locale": "en_US", |
|
"uiv": 4, |
|
} |
|
try: |
|
response = requests.get(url, params=params, timeout=5) |
|
response.raise_for_status() |
|
data = response.json() |
|
items = data.get("data", {}).get("result", {}).get("items", []) |
|
if items: |
|
snippet = items[0].get("desc", "") |
|
if not snippet: |
|
snippet = items[0].get("title", "") |
|
else: |
|
snippet = "Wala koy nakuha nga impormasyon gikan sa Qwant search." |
|
except Exception: |
|
snippet = "Naay problema sa pagkuha sa impormasyon gikan sa Qwant search." |
|
return snippet |
|
|
|
def respond(message, history: list[tuple[str, str]]): |
|
|
|
english_query = translate_to_english(message) |
|
|
|
|
|
search_result = get_internet_data(english_query) |
|
|
|
|
|
bisaya_search_result = translate_to_bisaya(search_result) |
|
|
|
|
|
enriched_message = ( |
|
f"{message}\n\nMga resulta gikan sa internet (isinalin sa bisaya): {bisaya_search_result}" |
|
) |
|
|
|
system_message = ( |
|
"Ikaw usa ka buotan nga Chatbot. Tubaga lang sa binisaya. " |
|
"Gamiton ang bag-ong kasayuran nga nakuha gikan sa internet. " |
|
"Ayaw og gamit ug English nga pinulungan." |
|
) |
|
max_tokens = 4096 |
|
temperature = 0.6 |
|
top_p = 0.95 |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
for user_text, assistant_text in history: |
|
if user_text: |
|
messages.append({"role": "user", "content": user_text}) |
|
if assistant_text: |
|
messages.append({"role": "assistant", "content": assistant_text}) |
|
messages.append({"role": "user", "content": enriched_message}) |
|
|
|
|
|
full_response = "" |
|
for token_message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = token_message.choices[0].delta.get("content", "") |
|
if not token: |
|
break |
|
full_response += token |
|
if len(full_response) > 3000: |
|
break |
|
|
|
|
|
final_response = translate_to_bisaya(full_response) |
|
yield final_response |
|
|
|
demo = gr.ChatInterface(respond) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|