|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
client = InferenceClient("Qwen/Qwen1.5-4B-Chat") |
|
|
|
def respond(message, history: list[tuple[str, str]]): |
|
system_message = "You are a friendly Chatbot. Respond only in bisaya language. No english translation." |
|
max_tokens = 4096 |
|
temperature = 0.6 |
|
top_p = 0.95 |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
for user_text, assistant_text in history: |
|
if user_text: |
|
messages.append({"role": "user", "content": user_text}) |
|
if assistant_text: |
|
messages.append({"role": "assistant", "content": assistant_text}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
previous_response = "" |
|
for token_message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = token_message.choices[0].delta.get("content", "") |
|
if not token: |
|
break |
|
response += token |
|
|
|
if response != previous_response: |
|
yield response |
|
previous_response = response |
|
|
|
|
|
if len(response) > 3000: |
|
break |
|
|
|
demo = gr.ChatInterface(respond) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|