File size: 2,567 Bytes
1915306
 
0e9eccb
1915306
777bb52
1915306
0e9eccb
 
 
4d0e77c
0e9eccb
 
 
 
 
 
 
 
 
 
 
 
4d0e77c
0e9eccb
 
 
4d0e77c
0e9eccb
 
 
8b5f3bd
0e9eccb
8b5f3bd
4a65c44
8b5f3bd
1915306
8b5f3bd
e8b0ec8
 
 
 
 
0e9eccb
4d0e77c
 
 
 
 
 
 
1915306
 
 
0c08de9
987b836
1915306
 
 
 
 
 
987b836
 
 
1915306
4d0e77c
0c08de9
 
 
4d0e77c
0e9eccb
0c08de9
1915306
8b5f3bd
1915306
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
from huggingface_hub import InferenceClient
import requests

client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")

def get_internet_data(query: str) -> str:
    """
    Uses DuckDuckGo's Instant Answer API to fetch search data.
    Returns a short summary of the query result.
    """
    url = "https://api.duckduckgo.com"
    params = {
        "q": query,
        "format": "json",
        "no_redirect": 1,
        "skip_disambig": 1,
    }
    try:
        response = requests.get(url, params=params, timeout=5)
        response.raise_for_status()
        data = response.json()
        # Retrieve a summary from the API's result
        result = data.get("AbstractText", "")
        if not result:
            result = "Wala koy nakuha nga impormasyon gikan sa internet."
    except Exception:
        result = "Naay problema sa pagkuha sa impormasyon gikan sa internet."
    return result

def respond(message, history: list[tuple[str, str]]):
    system_message = "Ikaw usa ka buotan nga Chatbot. Tubaga lang sa binisaya, ug ayaw gamita ang english nga pinulungan."
    max_tokens = 4096
    temperature = 0.6
    top_p = 0.95

    messages = [{"role": "system", "content": system_message}]
    for user_text, assistant_text in history:
        if user_text:
            messages.append({"role": "user", "content": user_text})
        if assistant_text:
            messages.append({"role": "assistant", "content": assistant_text})
    
    # Automatically perform an internet search for the user's query.
    search_result = get_internet_data(message)
    messages.append({
        "role": "assistant",
        "content": f"Mga resulta gikan sa internet para sa '{message}': {search_result}"
    })
    # Include the original query as part of the conversation context.
    messages.append({"role": "user", "content": message})

    response = ""
    previous_response = ""
    for token_message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = token_message.choices[0].delta.get("content", "")
        if not token:
            break
        response += token
        # Yield only if new content was added
        if response != previous_response:
            yield response
            previous_response = response
        # Optional: break if the response is too long
        if len(response) > 3000:
            break

demo = gr.ChatInterface(respond)

if __name__ == "__main__":
    demo.launch()