File size: 2,793 Bytes
1915306 0e9eccb 1915306 777bb52 1915306 0e9eccb 8b5f3bd 0e9eccb 8b5f3bd 4a65c44 8b5f3bd 1915306 8b5f3bd e8b0ec8 0e9eccb 1915306 0c08de9 987b836 1915306 987b836 1915306 0c08de9 0e9eccb 0c08de9 1915306 8b5f3bd 1915306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
from huggingface_hub import InferenceClient
import requests
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
def get_internet_data(query: str) -> str:
"""
Uses DuckDuckGo's Instant Answer API to fetch search data.
The returned text will be used to enrich the chatbot's context.
"""
url = "https://api.duckduckgo.com"
params = {
"q": query,
"format": "json",
"no_redirect": 1,
"skip_disambig": 1,
}
try:
response = requests.get(url, params=params, timeout=5)
response.raise_for_status()
data = response.json()
# Use the abstract text as a summary of the query
result = data.get("AbstractText", "")
if not result:
result = "Wala koy nakuha nga impormasyon gikan sa internet."
except Exception as e:
result = "Naay problema sa pagkuha sa impormasyon gikan sa internet."
return result
def respond(message, history: list[tuple[str, str]]):
system_message = "Ikaw usa ka buotan nga Chatbot. Tubaga lang sa binisaya, ug ayaw gamita ang english nga pinulungan."
max_tokens = 4096
temperature = 0.6
top_p = 0.95
messages = [{"role": "system", "content": system_message}]
for user_text, assistant_text in history:
if user_text:
messages.append({"role": "user", "content": user_text})
if assistant_text:
messages.append({"role": "assistant", "content": assistant_text})
# Check if the user wants to do an internet search.
# Trigger the search if the message starts with "search:"
if message.lower().startswith("search:"):
query = message[7:].strip() # Remove the "search:" prefix
search_result = get_internet_data(query)
# Add the search result into the conversation context in Bisaya.
messages.append({
"role": "assistant",
"content": f"Mga resulta gikan sa internet para sa '{query}': {search_result}"
})
# Optionally, you can clear the original message if it's only a search command:
message = ""
messages.append({"role": "user", "content": message})
response = ""
previous_response = ""
for token_message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = token_message.choices[0].delta.get("content", "")
if not token:
break
response += token
if response != previous_response:
yield response
previous_response = response
if len(response) > 3000:
break
demo = gr.ChatInterface(respond)
if __name__ == "__main__":
demo.launch()
|