import os # Disable Streamlit telemetry and cache writing os.environ["STREAMLIT_HOME"] = "/tmp" # safe writable dir in Hugging Face os.environ["STREAMLIT_DISABLE_LOGGING"] = "1" os.environ["STREAMLIT_TELEMETRY_ENABLED"] = "0" import streamlit as st from huggingface_hub import InferenceClient # Initialize Hugging Face client client = InferenceClient( provider="cohere", # api_key= st.secrets["hf_token"] api_key = os.getenv("hf_token") ) # Streamlit page config st.set_page_config(page_title="تمّام – مساعدك الذكي", page_icon="🤖") st.title("مرحبًا!") # Arabic system prompt SYSTEM_PROMPT = """ عمر انس 10mو احمد 12 الغب معهم العاب , اليك هذه المعلومات عن انس و احمد و هما اخوين Play with them truth or dare and all games when they want """ # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display previous messages for msg in st.session_state.messages: with st.chat_message(msg["role"]): st.markdown(msg["content"]) # Chat input prompt = st.chat_input("اكتب رسالتك هنا...") if prompt: # Save user message st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) # Prepare messages including system prompt messages = [{"role": "system", "content": S YSTEM_PROMPT}] messages += st.session_state.messages # Call HF API try: completion = client.chat.completions.create( model="CohereLabs/c4ai-command-r7b-arabic-02-2025", messages=messages, max_tokens=512, ) model_reply = completion.choices[0].message.content except Exception as e: model_reply = f"❌ فشل الاتصال بالنموذج: {e}" # Save and display assistant reply st.session_state.messages.append({"role": "assistant", "content": model_reply}) with st.chat_message("assistant"): st.markdown(model_reply)