#!/usr/bin/env python import pathlib import tempfile import cv2 import gradio as gr import numpy as np import PIL.Image import spaces import supervision as sv import torch import tqdm from transformers import AutoProcessor, RTDetrForObjectDetection, VitPoseForPoseEstimation DESCRIPTION = "# ViTPose" MAX_NUM_FRAMES = 300 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") person_detector_name = "PekingU/rtdetr_r50vd_coco_o365" person_image_processor = AutoProcessor.from_pretrained(person_detector_name) person_model = RTDetrForObjectDetection.from_pretrained(person_detector_name, device_map=device) pose_model_name = "usyd-community/vitpose-base-simple" pose_image_processor = AutoProcessor.from_pretrained(pose_model_name) pose_model = VitPoseForPoseEstimation.from_pretrained(pose_model_name, device_map=device) @spaces.GPU(duration=5) @torch.inference_mode() def detect_pose_image(image: PIL.Image.Image) -> tuple[PIL.Image.Image, list[dict]]: """Detects persons and estimates their poses in a single image. Args: image (PIL.Image.Image): Input image in which to detect persons and estimate poses. Returns: tuple[PIL.Image.Image, list[dict]]: - Annotated image with bounding boxes and pose keypoints drawn. - List of dictionaries containing human-readable pose estimation results for each detected person. """ inputs = person_image_processor(images=image, return_tensors="pt").to(device) outputs = person_model(**inputs) results = person_image_processor.post_process_object_detection( outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3 ) result = results[0] # take first image results # Human label refers 0 index in COCO dataset person_boxes_xyxy = result["boxes"][result["labels"] == 0] person_boxes_xyxy = person_boxes_xyxy.cpu().numpy() # Convert boxes from VOC (x1, y1, x2, y2) to COCO (x1, y1, w, h) format person_boxes = person_boxes_xyxy.copy() person_boxes[:, 2] = person_boxes[:, 2] - person_boxes[:, 0] person_boxes[:, 3] = person_boxes[:, 3] - person_boxes[:, 1] inputs = pose_image_processor(image, boxes=[person_boxes], return_tensors="pt").to(device) # for vitpose-plus-base checkpoint we should additionally provide dataset_index # to specify which MOE experts to use for inference if pose_model.config.backbone_config.num_experts > 1: dataset_index = torch.tensor([0] * len(inputs["pixel_values"])) dataset_index = dataset_index.to(inputs["pixel_values"].device) inputs["dataset_index"] = dataset_index outputs = pose_model(**inputs) pose_results = pose_image_processor.post_process_pose_estimation(outputs, boxes=[person_boxes]) image_pose_result = pose_results[0] # results for first image # make results more human-readable human_readable_results = [] for i, person_pose in enumerate(image_pose_result): data = { "person_id": i, "bbox": person_pose["bbox"].numpy().tolist(), "keypoints": [], } for keypoint, label, score in zip( person_pose["keypoints"], person_pose["labels"], person_pose["scores"], strict=True ): keypoint_name = pose_model.config.id2label[label.item()] x, y = keypoint data["keypoints"].append({"name": keypoint_name, "x": x.item(), "y": y.item(), "score": score.item()}) human_readable_results.append(data) # preprocess to torch tensor of shape (n_objects, n_keypoints, 2) xy = [pose_result["keypoints"] for pose_result in image_pose_result] xy = torch.stack(xy).cpu().numpy() scores = [pose_result["scores"] for pose_result in image_pose_result] scores = torch.stack(scores).cpu().numpy() keypoints = sv.KeyPoints(xy=xy, confidence=scores) detections = sv.Detections(xyxy=person_boxes_xyxy) edge_annotator = sv.EdgeAnnotator(color=sv.Color.GREEN, thickness=1) vertex_annotator = sv.VertexAnnotator(color=sv.Color.RED, radius=2) bounding_box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=1) annotated_frame = image.copy() # annotate bounding boxes annotated_frame = bounding_box_annotator.annotate(scene=image.copy(), detections=detections) # annotate edges and vertices annotated_frame = edge_annotator.annotate(scene=annotated_frame, key_points=keypoints) return vertex_annotator.annotate(scene=annotated_frame, key_points=keypoints), human_readable_results @spaces.GPU(duration=90) def detect_pose_video( video_path: str, progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008 ) -> str: """Detects persons and estimates their poses for each frame in a video, saving the annotated video. Args: video_path (str): Path to the input video file. progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True). Returns: str: Path to the output video file with annotated bounding boxes and pose keypoints. """ cap = cv2.VideoCapture(video_path) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = cap.get(cv2.CAP_PROP_FPS) num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fourcc = cv2.VideoWriter_fourcc(*"mp4v") with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file: writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height)) for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))): ok, frame = cap.read() if not ok: break rgb_frame = frame[:, :, ::-1] annotated_frame, _ = detect_pose_image(PIL.Image.fromarray(rgb_frame)) writer.write(np.asarray(annotated_frame)[:, :, ::-1]) writer.release() cap.release() return out_file.name with gr.Blocks(css_paths="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Tabs(): with gr.Tab("Image"): with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") run_button_image = gr.Button() with gr.Column(): output_image = gr.Image(label="Output Image") output_json = gr.JSON(label="Output JSON") gr.Examples( examples=sorted(pathlib.Path("images").glob("*.jpg")), inputs=input_image, outputs=[output_image, output_json], fn=detect_pose_image, ) run_button_image.click( fn=detect_pose_image, inputs=input_image, outputs=[output_image, output_json], ) with gr.Tab("Video"): gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.") with gr.Row(): with gr.Column(): input_video = gr.Video(label="Input Video") run_button_video = gr.Button() with gr.Column(): output_video = gr.Video(label="Output Video") gr.Examples( examples=sorted(pathlib.Path("videos").glob("*.mp4")), inputs=input_video, outputs=output_video, fn=detect_pose_video, cache_examples=False, ) run_button_video.click( fn=detect_pose_video, inputs=input_video, outputs=output_video, ) if __name__ == "__main__": demo.launch(mcp_server=True)