hysts HF Staff commited on
Commit
42951b3
·
1 Parent(s): af81975

Remove token

Browse files
Files changed (1) hide show
  1. app.py +5 -8
app.py CHANGED
@@ -34,8 +34,6 @@ Related Apps:
34
  '''
35
  ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.tadne-interpolation" alt="visitor badge"/></center>'
36
 
37
- TOKEN = os.environ['TOKEN']
38
-
39
 
40
  def parse_args() -> argparse.Namespace:
41
  parser = argparse.ArgumentParser()
@@ -54,8 +52,7 @@ def parse_args() -> argparse.Namespace:
54
  def load_model(device: torch.device) -> nn.Module:
55
  model = Generator(512, 1024, 4, channel_multiplier=2)
56
  path = hf_hub_download('hysts/TADNE',
57
- 'models/aydao-anime-danbooru2019s-512-5268480.pt',
58
- use_auth_token=TOKEN)
59
  checkpoint = torch.load(path)
60
  model.load_state_dict(checkpoint['g_ema'])
61
  model.eval()
@@ -84,10 +81,10 @@ def generate_image(model: nn.Module, z: torch.Tensor, truncation_psi: float,
84
 
85
 
86
  @torch.inference_mode()
87
- def generate_interpolated_images(
88
- seed0: int, seed1: int, num_intermediate: int, psi0: float,
89
- psi1: float, randomize_noise: bool, model: nn.Module,
90
- device: torch.device) -> list[np.ndarray]:
91
  seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
92
  seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
93
 
 
34
  '''
35
  ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.tadne-interpolation" alt="visitor badge"/></center>'
36
 
 
 
37
 
38
  def parse_args() -> argparse.Namespace:
39
  parser = argparse.ArgumentParser()
 
52
  def load_model(device: torch.device) -> nn.Module:
53
  model = Generator(512, 1024, 4, channel_multiplier=2)
54
  path = hf_hub_download('hysts/TADNE',
55
+ 'models/aydao-anime-danbooru2019s-512-5268480.pt')
 
56
  checkpoint = torch.load(path)
57
  model.load_state_dict(checkpoint['g_ema'])
58
  model.eval()
 
81
 
82
 
83
  @torch.inference_mode()
84
+ def generate_interpolated_images(seed0: int, seed1: int, num_intermediate: int,
85
+ psi0: float, psi1: float,
86
+ randomize_noise: bool, model: nn.Module,
87
+ device: torch.device) -> list[np.ndarray]:
88
  seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
89
  seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
90