File size: 5,304 Bytes
cfde09c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import subprocess
import sys

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

if os.environ.get('SYSTEM') == 'spaces':
    subprocess.call('git apply ../patch'.split(), cwd='stylegan2-pytorch')

sys.path.insert(0, 'stylegan2-pytorch')

from model import Generator

TITLE = 'TADNE (This Anime Does Not Exist) Interpolation'
DESCRIPTION = 'The original TADNE site is https://thisanimedoesnotexist.ai/.'
ARTICLE = None

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    parser.add_argument('--allow-screenshot', action='store_true')
    return parser.parse_args()


def load_model(device: torch.device) -> nn.Module:
    model = Generator(512, 1024, 4, channel_multiplier=2)
    path = hf_hub_download('hysts/TADNE',
                           'models/aydao-anime-danbooru2019s-512-5268480.pt',
                           use_auth_token=TOKEN)
    checkpoint = torch.load(path)
    model.load_state_dict(checkpoint['g_ema'])
    model.eval()
    model.to(device)
    model.latent_avg = checkpoint['latent_avg'].to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.style_dim)).to(device)
        model([z], truncation=0.7, truncation_latent=model.latent_avg)
    return model


def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(
        1, z_dim)).to(device).float()


@torch.inference_mode()
def generate_image(model: nn.Module, z: torch.Tensor, truncation_psi: float,
                   randomize_noise: bool) -> np.ndarray:
    out, _ = model([z],
                   truncation=truncation_psi,
                   truncation_latent=model.latent_avg,
                   randomize_noise=randomize_noise)
    out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    return out[0].cpu().numpy()


@torch.inference_mode()
def generate_interpolated_images(seed0: int, seed1: int, num_intermediate: int,
                                 psi0: float, psi1: float,
                                 randomize_noise: bool, model: nn.Module,
                                 device: torch.device) -> np.ndarray:
    seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
    seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))

    z0 = generate_z(model.style_dim, seed0, device)
    if num_intermediate == -1:
        out = generate_image(model, z0, psi0, randomize_noise)
        return out

    z1 = generate_z(model.style_dim, seed1, device)
    vec = z1 - z0
    dvec = vec / (num_intermediate + 1)
    zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
    dpsi = (psi1 - psi0) / (num_intermediate + 1)
    psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
    res = []
    for z, psi in zip(zs, psis):
        out = generate_image(model, z, psi, randomize_noise)
        res.append(out)
    res = np.hstack(res)
    return res


def main():
    gr.close_all()

    args = parse_args()
    device = torch.device(args.device)

    model = load_model(device)

    func = functools.partial(generate_interpolated_images,
                             model=model,
                             device=device)
    func = functools.update_wrapper(func, generate_interpolated_images)

    examples = [
        [29703, 55376, 3, 0.7, 0.7, False],
        [34141, 36864, 5, 0.7, 0.7, False],
        [74650, 88322, 7, 0.7, 0.7, False],
        [84314, 70317410, 9, 0.7, 0.7, False],
        [55376, 55376, 5, 0.3, 1.3, False],
    ]

    gr.Interface(
        func,
        [
            gr.inputs.Number(default=29703, label='Seed 1'),
            gr.inputs.Number(default=55376, label='Seed 2'),
            gr.inputs.Slider(-1,
                             11,
                             step=1,
                             default=3,
                             label='Number of Intermediate Frames'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi 1'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi 2'),
            gr.inputs.Checkbox(default=False, label='Randomize Noise'),
        ],
        gr.outputs.Image(type='numpy', label='Output'),
        examples=examples,
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_screenshot=args.allow_screenshot,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()