Spaces:
Runtime error
Runtime error
File size: 5,952 Bytes
cfde09c 89ae773 37a7a92 89ae773 cfde09c a2ee6bd cfde09c a2ee6bd cfde09c a2ee6bd cfde09c a2ee6bd cfde09c a2ee6bd cfde09c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import subprocess
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
if os.environ.get('SYSTEM') == 'spaces':
subprocess.call('git apply ../patch'.split(), cwd='stylegan2-pytorch')
sys.path.insert(0, 'stylegan2-pytorch')
from model import Generator
TITLE = 'TADNE (This Anime Does Not Exist) Interpolation'
DESCRIPTION = '''The original TADNE site is https://thisanimedoesnotexist.ai/.
Expected execution time on Hugging Face Spaces: 4s for one image
Related Apps:
- [TADNE](https://huggingface.co/spaces/hysts/TADNE)
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
'''
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.tadne-interpolation" alt="visitor badge"/></center>'
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def load_model(device: torch.device) -> nn.Module:
model = Generator(512, 1024, 4, channel_multiplier=2)
path = hf_hub_download('hysts/TADNE',
'models/aydao-anime-danbooru2019s-512-5268480.pt',
use_auth_token=TOKEN)
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['g_ema'])
model.eval()
model.to(device)
model.latent_avg = checkpoint['latent_avg'].to(device)
with torch.inference_mode():
z = torch.zeros((1, model.style_dim)).to(device)
model([z], truncation=0.7, truncation_latent=model.latent_avg)
return model
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(model: nn.Module, z: torch.Tensor, truncation_psi: float,
randomize_noise: bool) -> np.ndarray:
out, _ = model([z],
truncation=truncation_psi,
truncation_latent=model.latent_avg,
randomize_noise=randomize_noise)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
@torch.inference_mode()
def generate_interpolated_images(
seed0: int, seed1: int, num_intermediate: int, psi0: float,
psi1: float, randomize_noise: bool, model: nn.Module,
device: torch.device) -> tuple[list[np.ndarray], np.ndarray]:
seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max))
seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max))
z0 = generate_z(model.style_dim, seed0, device)
if num_intermediate == -1:
out = generate_image(model, z0, psi0, randomize_noise)
return [out], None
z1 = generate_z(model.style_dim, seed1, device)
vec = z1 - z0
dvec = vec / (num_intermediate + 1)
zs = [z0 + dvec * i for i in range(num_intermediate + 2)]
dpsi = (psi1 - psi0) / (num_intermediate + 1)
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)]
res = []
for z, psi in zip(zs, psis):
out = generate_image(model, z, psi, randomize_noise)
res.append(out)
concatenated = np.hstack(res)
return res, concatenated
def main():
args = parse_args()
device = torch.device(args.device)
model = load_model(device)
func = functools.partial(generate_interpolated_images,
model=model,
device=device)
func = functools.update_wrapper(func, generate_interpolated_images)
examples = [
[29703, 55376, 3, 0.7, 0.7, False],
[34141, 36864, 5, 0.7, 0.7, False],
[74650, 88322, 7, 0.7, 0.7, False],
[84314, 70317410, 9, 0.7, 0.7, False],
[55376, 55376, 5, 0.3, 1.3, False],
]
gr.Interface(
func,
[
gr.inputs.Number(default=29703, label='Seed 1'),
gr.inputs.Number(default=55376, label='Seed 2'),
gr.inputs.Slider(-1,
21,
step=1,
default=3,
label='Number of Intermediate Frames'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi 1'),
gr.inputs.Slider(
0, 2, step=0.05, default=0.7, label='Truncation psi 2'),
gr.inputs.Checkbox(default=False, label='Randomize Noise'),
],
[
gr.outputs.Carousel(gr.outputs.Image(type='numpy'),
label='Output Images'),
gr.outputs.Image(type='numpy', label='Concatenated'),
],
examples=examples,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|