Spaces:
Running
on
Zero
Running
on
Zero
| import tempfile | |
| import numpy as np | |
| import torch | |
| import trimesh | |
| from shap_e.diffusion.gaussian_diffusion import diffusion_from_config | |
| from shap_e.diffusion.sample import sample_latents | |
| from shap_e.models.download import load_config, load_model | |
| from shap_e.models.nn.camera import (DifferentiableCameraBatch, | |
| DifferentiableProjectiveCamera) | |
| from shap_e.models.transmitter.base import Transmitter, VectorDecoder | |
| from shap_e.rendering.torch_mesh import TorchMesh | |
| from shap_e.util.collections import AttrDict | |
| from shap_e.util.image_util import load_image | |
| # Copied from https://github.com/openai/shap-e/blob/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/util/notebooks.py#L15-L42 | |
| def create_pan_cameras(size: int, | |
| device: torch.device) -> DifferentiableCameraBatch: | |
| origins = [] | |
| xs = [] | |
| ys = [] | |
| zs = [] | |
| for theta in np.linspace(0, 2 * np.pi, num=20): | |
| z = np.array([np.sin(theta), np.cos(theta), -0.5]) | |
| z /= np.sqrt(np.sum(z**2)) | |
| origin = -z * 4 | |
| x = np.array([np.cos(theta), -np.sin(theta), 0.0]) | |
| y = np.cross(z, x) | |
| origins.append(origin) | |
| xs.append(x) | |
| ys.append(y) | |
| zs.append(z) | |
| return DifferentiableCameraBatch( | |
| shape=(1, len(xs)), | |
| flat_camera=DifferentiableProjectiveCamera( | |
| origin=torch.from_numpy(np.stack(origins, | |
| axis=0)).float().to(device), | |
| x=torch.from_numpy(np.stack(xs, axis=0)).float().to(device), | |
| y=torch.from_numpy(np.stack(ys, axis=0)).float().to(device), | |
| z=torch.from_numpy(np.stack(zs, axis=0)).float().to(device), | |
| width=size, | |
| height=size, | |
| x_fov=0.7, | |
| y_fov=0.7, | |
| ), | |
| ) | |
| # Copied from https://github.com/openai/shap-e/blob/8625e7c15526d8510a2292f92165979268d0e945/shap_e/util/notebooks.py#LL64C1-L76C33 | |
| def decode_latent_mesh( | |
| xm: Transmitter | VectorDecoder, | |
| latent: torch.Tensor, | |
| ) -> TorchMesh: | |
| decoded = xm.renderer.render_views( | |
| AttrDict(cameras=create_pan_cameras( | |
| 2, latent.device)), # lowest resolution possible | |
| params=(xm.encoder if isinstance(xm, Transmitter) else | |
| xm).bottleneck_to_params(latent[None]), | |
| options=AttrDict(rendering_mode='stf', render_with_direction=False), | |
| ) | |
| return decoded.raw_meshes[0] | |
| class Model: | |
| def __init__(self): | |
| self.device = torch.device( | |
| 'cuda' if torch.cuda.is_available() else 'cpu') | |
| self.xm = load_model('transmitter', device=self.device) | |
| self.diffusion = diffusion_from_config(load_config('diffusion')) | |
| self.model_text = None | |
| self.model_image = None | |
| def load_model(self, model_name: str) -> None: | |
| assert model_name in ['text300M', 'image300M'] | |
| if model_name == 'text300M' and self.model_text is None: | |
| self.model_text = load_model(model_name, device=self.device) | |
| elif model_name == 'image300M' and self.model_image is None: | |
| self.model_image = load_model(model_name, device=self.device) | |
| def to_glb(self, latent: torch.Tensor) -> str: | |
| ply_path = tempfile.NamedTemporaryFile(suffix='.ply', | |
| delete=False, | |
| mode='w+b') | |
| decode_latent_mesh(self.xm, latent).tri_mesh().write_ply(ply_path) | |
| mesh = trimesh.load(ply_path.name) | |
| rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0]) | |
| mesh = mesh.apply_transform(rot) | |
| rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0]) | |
| mesh = mesh.apply_transform(rot) | |
| mesh_path = tempfile.NamedTemporaryFile(suffix='.glb', delete=False) | |
| mesh.export(mesh_path.name, file_type='glb') | |
| return mesh_path.name | |
| def run_text(self, | |
| prompt: str, | |
| seed: int = 0, | |
| guidance_scale: float = 15.0, | |
| num_steps: int = 64) -> str: | |
| self.load_model('text300M') | |
| torch.manual_seed(seed) | |
| latents = sample_latents( | |
| batch_size=1, | |
| model=self.model_text, | |
| diffusion=self.diffusion, | |
| guidance_scale=guidance_scale, | |
| model_kwargs=dict(texts=[prompt]), | |
| progress=True, | |
| clip_denoised=True, | |
| use_fp16=True, | |
| use_karras=True, | |
| karras_steps=num_steps, | |
| sigma_min=1e-3, | |
| sigma_max=160, | |
| s_churn=0, | |
| ) | |
| return self.to_glb(latents[0]) | |
| def run_image(self, | |
| image_path: str, | |
| seed: int = 0, | |
| guidance_scale: float = 3.0, | |
| num_steps: int = 64) -> str: | |
| self.load_model('image300M') | |
| torch.manual_seed(seed) | |
| image = load_image(image_path) | |
| latents = sample_latents( | |
| batch_size=1, | |
| model=self.model_image, | |
| diffusion=self.diffusion, | |
| guidance_scale=guidance_scale, | |
| model_kwargs=dict(images=[image]), | |
| progress=True, | |
| clip_denoised=True, | |
| use_fp16=True, | |
| use_karras=True, | |
| karras_steps=num_steps, | |
| sigma_min=1e-3, | |
| sigma_max=160, | |
| s_churn=0, | |
| ) | |
| return self.to_glb(latents[0]) | |