#!/usr/bin/env python from __future__ import annotations import functools import os import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download from model import Model TITLE = 'MobileStyleGAN' DESCRIPTION = 'This is an unofficial demo for https://github.com/bes-dev/MobileStyleGAN.pytorch.' SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/MobileStyleGAN/resolve/main/samples' ARTICLE = f'''## Generated images ### FFHQ - size: 1024x1024 - seed: 0-99 - truncation: 1.0 ![FFHQ]({SAMPLE_IMAGE_DIR}/ffhq.jpg) ''' HF_TOKEN = os.getenv('HF_TOKEN') def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: return torch.from_numpy(np.random.RandomState(seed).randn( 1, z_dim)).to(device).float() @torch.inference_mode() def generate_image(seed: int, truncation_psi: float, generator: str, model: nn.Module, device: torch.device) -> np.ndarray: seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = generate_z(model.mapping_net.style_dim, seed, device) out = model(z, truncation_psi=truncation_psi, generator=generator) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return out[0].cpu().numpy() def load_model(device: torch.device) -> nn.Module: path = hf_hub_download('hysts/MobileStyleGAN', 'models/mobilestylegan_ffhq_v2.pth', use_auth_token=HF_TOKEN) ckpt = torch.load(path) model = Model() model.load_state_dict(ckpt['state_dict'], strict=False) model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.mapping_net.style_dim)).to(device) model(z) return model device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = load_model(device) func = functools.partial(generate_image, model=model, device=device) gr.Interface( fn=func, inputs=[ gr.Slider(label='Seed', minimum=0, maximum=100000, step=1, value=0, randomize=True), gr.Slider(label='Truncation psi', minimum=0, maximum=2, step=0.05, value=1.0), gr.Radio(label='Generator', choices=['student', 'teacher'], type='value', value='student'), ], outputs=gr.Image(label='Output', type='numpy'), title=TITLE, description=DESCRIPTION, article=ARTICLE, ).queue().launch(show_api=False)