TRELLIS / app.py
hysts's picture
hysts HF Staff
Enhance image preprocessing documentation and clarify 3D model generation process. Update function docstrings to include detailed descriptions of input, output, and processing steps.
b2549c7
raw
history blame
11.5 kB
import os
import pathlib
import shlex
import subprocess
import tempfile
os.environ["SPCONV_ALGO"] = "native"
if os.getenv("SPACE_ID"):
subprocess.run( # noqa: S603
shlex.split("pip install wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"),
check=True,
)
subprocess.run( # noqa: S603
shlex.split("pip install wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl"),
check=True,
)
import gradio as gr
import imageio
import numpy as np
import spaces
import torch
from easydict import EasyDict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import postprocessing_utils, render_utils
MAX_SEED = np.iinfo(np.int32).max
pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
pipeline.cuda()
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
def preprocess_image(image: Image.Image) -> Image.Image:
"""Preprocess the input image for 3D model generation.
This function performs several preprocessing steps to prepare the image for 3D model generation:
1. Handles alpha channel or removes background if not present
2. Centers and crops the object
3. Normalizes the image size to 518x518 pixels
4. Applies proper alpha channel processing
Args:
image (Image.Image): The input image to be preprocessed. Can be either RGB or RGBA format.
Returns:
Image.Image: The preprocessed image with the following characteristics:
- Size: 518x518 pixels
- Format: RGBA
- Background: Removed
- Object: Centered and properly scaled
Raises:
None: This function does not raise any exceptions.
Note:
The preprocessing is handled by the pipeline's internal preprocessing function,
which uses rembg for background removal if needed.
"""
return pipeline.preprocess_image(image)
def save_state_to_file(gs: Gaussian, mesh: MeshExtractResult, output_path: str) -> None:
state = {
"gaussian": {
**gs.init_params,
"_xyz": gs._xyz,
"_features_dc": gs._features_dc,
"_scaling": gs._scaling,
"_rotation": gs._rotation,
"_opacity": gs._opacity,
},
"mesh": {
"vertices": mesh.vertices,
"faces": mesh.faces,
},
}
torch.save(state, output_path)
def load_state_from_file(state_path: str) -> tuple[Gaussian, EasyDict]:
state = torch.load(state_path)
gs = Gaussian(
aabb=state["gaussian"]["aabb"],
sh_degree=state["gaussian"]["sh_degree"],
mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
scaling_bias=state["gaussian"]["scaling_bias"],
opacity_bias=state["gaussian"]["opacity_bias"],
scaling_activation=state["gaussian"]["scaling_activation"],
)
gs._xyz = state["gaussian"]["_xyz"]
gs._features_dc = state["gaussian"]["_features_dc"]
gs._scaling = state["gaussian"]["_scaling"]
gs._rotation = state["gaussian"]["_rotation"]
gs._opacity = state["gaussian"]["_opacity"]
mesh = EasyDict(
vertices=state["mesh"]["vertices"],
faces=state["mesh"]["faces"],
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""Get the random seed."""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
) -> tuple[str, str]:
"""Convert an image to a 3D model.
This function takes an input image and generates a 3D model using a two-stage process
with separate parameters for each stage. It also generates a preview video that combines
color and normal map renderings of the 3D model.
Args:
image (Image.Image): The input image.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
Returns:
tuple[str, str]: A tuple containing:
- str: Path to the state file (.pth) containing the 3D model data
- str: Path to the preview video file (.mp4) showing the 3D model rotation
Note:
The generated files are saved as temporary files that will not be automatically
deleted. It is the caller's responsibility to manage these files.
"""
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs["gaussian"][0], num_frames=120)["color"]
video_geo = render_utils.render_video(outputs["mesh"][0], num_frames=120)["normal"]
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
with (
tempfile.NamedTemporaryFile(suffix=".pth", delete=False) as state_file,
tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_file,
):
save_state_to_file(outputs["gaussian"][0], outputs["mesh"][0], state_file.name)
torch.cuda.empty_cache()
imageio.mimsave(video_file.name, video, fps=15)
return state_file.name, video_file.name
@spaces.GPU(duration=90)
def extract_glb(
state_path: str,
mesh_simplify: float,
texture_size: int,
) -> str:
"""Extract a GLB file from the 3D model.
Args:
state_path (str): The path to the pickle file that contains the state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
gs, mesh = load_state_from_file(state_path)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
torch.cuda.empty_cache()
with tempfile.NamedTemporaryFile(suffix=".glb", delete=False) as glb_file:
glb.export(glb_file.name)
return glb_file.name
@spaces.GPU
def extract_gaussian(state_path: str) -> str:
"""Extract a Gaussian file from the 3D model.
Args:
state_path (str): The path to the pickle file that contains the state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
gs, _ = load_state_from_file(state_path)
with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as gaussian_file:
gs.save_ply(gaussian_file.name)
return gaussian_file.name
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
""")
with gr.Row():
with gr.Column():
image_prompt = gr.Image(
label="Image Prompt",
format="png",
image_mode="RGBA",
type="pil",
height=300,
)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(
label="Guidance Strength", minimum=0.0, maximum=10.0, step=0.1, value=7.5
)
ss_sampling_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, step=1, value=12)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(
label="Guidance Strength", minimum=0.0, maximum=10.0, step=0.1, value=3.0
)
slat_sampling_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, step=1, value=12)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(label="Simplify", minimum=0.9, maximum=0.98, step=0.01, value=0.95)
texture_size = gr.Slider(label="Texture Size", minimum=512, maximum=2048, step=512, value=1024)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
state_file_path = gr.Textbox(visible=False)
examples = gr.Examples(
examples=sorted(pathlib.Path("assets/example_image").glob("*.png")),
fn=preprocess_image,
inputs=image_prompt,
outputs=image_prompt,
run_on_click=True,
examples_per_page=64,
)
image_prompt.upload(
fn=preprocess_image,
inputs=image_prompt,
outputs=image_prompt,
)
generate_btn.click(
fn=get_seed,
inputs=[randomize_seed, seed],
outputs=seed,
).then(
fn=image_to_3d,
inputs=[
image_prompt,
seed,
ss_guidance_strength,
ss_sampling_steps,
slat_guidance_strength,
slat_sampling_steps,
],
outputs=[state_file_path, video_output],
).then(
fn=lambda: (gr.Button(interactive=True), gr.Button(interactive=True)),
outputs=[extract_glb_btn, extract_gs_btn],
api_name=False,
)
video_output.clear(
fn=lambda: (gr.Button(interactive=False), gr.Button(interactive=False)),
outputs=[extract_glb_btn, extract_gs_btn],
api_name=False,
)
extract_glb_btn.click(fn=extract_glb, inputs=[state_file_path, mesh_simplify, texture_size], outputs=model_output)
extract_gs_btn.click(fn=extract_gaussian, inputs=state_file_path, outputs=model_output)
if __name__ == "__main__":
demo.launch(mcp_server=True)