TRELLIS / app.py
hysts's picture
hysts HF Staff
Remove temp dir and gr.State
583ab5f
raw
history blame
10.6 kB
import os
import pathlib
import shlex
import subprocess
import tempfile
os.environ["SPCONV_ALGO"] = "native"
if os.getenv("SPACE_ID"):
subprocess.run( # noqa: S603
shlex.split("pip install wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"),
check=True,
)
subprocess.run( # noqa: S603
shlex.split("pip install wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl"),
check=True,
)
import gradio as gr
import imageio
import numpy as np
import spaces
import torch
from easydict import EasyDict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import postprocessing_utils, render_utils
MAX_SEED = np.iinfo(np.int32).max
pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
pipeline.cuda()
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
def preprocess_image(image: Image.Image) -> Image.Image:
"""Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
Image.Image: The preprocessed image.
"""
return pipeline.preprocess_image(image)
def preprocess_images(images: list[tuple[Image.Image, str]]) -> list[Image.Image]:
"""Preprocess a list of input images.
Args:
images (List[Tuple[Image.Image, str]]): The input images.
Returns:
List[Image.Image]: The preprocessed images.
"""
images = [image[0] for image in images]
return [pipeline.preprocess_image(image) for image in images]
def save_state_to_file(gs: Gaussian, mesh: MeshExtractResult, output_path: str) -> None:
state = {
"gaussian": {
**gs.init_params,
"_xyz": gs._xyz,
"_features_dc": gs._features_dc,
"_scaling": gs._scaling,
"_rotation": gs._rotation,
"_opacity": gs._opacity,
},
"mesh": {
"vertices": mesh.vertices,
"faces": mesh.faces,
},
}
torch.save(state, output_path)
def load_state_from_file(state_path: str) -> tuple[Gaussian, EasyDict]:
state = torch.load(state_path)
gs = Gaussian(
aabb=state["gaussian"]["aabb"],
sh_degree=state["gaussian"]["sh_degree"],
mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
scaling_bias=state["gaussian"]["scaling_bias"],
opacity_bias=state["gaussian"]["opacity_bias"],
scaling_activation=state["gaussian"]["scaling_activation"],
)
gs._xyz = state["gaussian"]["_xyz"]
gs._features_dc = state["gaussian"]["_features_dc"]
gs._scaling = state["gaussian"]["_scaling"]
gs._rotation = state["gaussian"]["_rotation"]
gs._opacity = state["gaussian"]["_opacity"]
mesh = EasyDict(
vertices=state["mesh"]["vertices"],
faces=state["mesh"]["faces"],
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""Get the random seed."""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
) -> tuple[str, str]:
"""Convert an image to a 3D model.
Args:
image (Image.Image): The input image.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
Returns:
str: The path to the pickle file that contains the state of the generated 3D model.
str: The path to the video of the 3D model.
"""
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs["gaussian"][0], num_frames=120)["color"]
video_geo = render_utils.render_video(outputs["mesh"][0], num_frames=120)["normal"]
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
with (
tempfile.NamedTemporaryFile(suffix=".pth", delete=False) as state_file,
tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_file,
):
save_state_to_file(outputs["gaussian"][0], outputs["mesh"][0], state_file.name)
torch.cuda.empty_cache()
imageio.mimsave(video_file.name, video, fps=15)
return state_file.name, video_file.name
@spaces.GPU(duration=90)
def extract_glb(
state_path: str,
mesh_simplify: float,
texture_size: int,
) -> str:
"""Extract a GLB file from the 3D model.
Args:
state_path (str): The path to the pickle file that contains the state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
gs, mesh = load_state_from_file(state_path)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
torch.cuda.empty_cache()
with tempfile.NamedTemporaryFile(suffix=".glb", delete=False) as glb_file:
glb.export(glb_file.name)
return glb_file.name
@spaces.GPU
def extract_gaussian(state_path: str) -> str:
"""Extract a Gaussian file from the 3D model.
Args:
state_path (str): The path to the pickle file that contains the state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
gs, _ = load_state_from_file(state_path)
with tempfile.NamedTemporaryFile(suffix=".ply", delete=False) as gaussian_file:
gs.save_ply(gaussian_file.name)
return gaussian_file.name
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
""")
with gr.Row():
with gr.Column():
image_prompt = gr.Image(
label="Image Prompt",
format="png",
image_mode="RGBA",
type="pil",
height=300,
)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(
label="Guidance Strength", minimum=0.0, maximum=10.0, step=0.1, value=7.5
)
ss_sampling_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, step=1, value=12)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(
label="Guidance Strength", minimum=0.0, maximum=10.0, step=0.1, value=3.0
)
slat_sampling_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, step=1, value=12)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(label="Simplify", minimum=0.9, maximum=0.98, step=0.01, value=0.95)
texture_size = gr.Slider(label="Texture Size", minimum=512, maximum=2048, step=512, value=1024)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
state_file_path = gr.Textbox(visible=False)
examples = gr.Examples(
examples=sorted(pathlib.Path("assets/example_image").glob("*.png")),
fn=preprocess_image,
inputs=image_prompt,
outputs=image_prompt,
run_on_click=True,
examples_per_page=64,
)
image_prompt.upload(
fn=preprocess_image,
inputs=image_prompt,
outputs=image_prompt,
)
generate_btn.click(
fn=get_seed,
inputs=[randomize_seed, seed],
outputs=seed,
).then(
fn=image_to_3d,
inputs=[
image_prompt,
seed,
ss_guidance_strength,
ss_sampling_steps,
slat_guidance_strength,
slat_sampling_steps,
],
outputs=[state_file_path, video_output],
).then(
fn=lambda: (gr.Button(interactive=True), gr.Button(interactive=True)),
outputs=[extract_glb_btn, extract_gs_btn],
api_name=False,
)
video_output.clear(
fn=lambda: (gr.Button(interactive=False), gr.Button(interactive=False)),
outputs=[extract_glb_btn, extract_gs_btn],
api_name=False,
)
extract_glb_btn.click(fn=extract_glb, inputs=[state_file_path, mesh_simplify, texture_size], outputs=model_output)
extract_gs_btn.click(fn=extract_gaussian, inputs=state_file_path, outputs=model_output)
if __name__ == "__main__":
demo.launch(mcp_server=True)