File size: 12,052 Bytes
db6a3b7 ba57f56 583ab5f e669631 db6a3b7 e669631 645df58 db6a3b7 e669631 db6a3b7 9880f3d e669631 db6a3b7 f6b07bb bd46f72 62addc9 bd46f72 02ee8b8 b7b00e2 b2549c7 db6a3b7 b2549c7 e669631 b7b00e2 b2549c7 e669631 b7b00e2 b2549c7 b7b00e2 b2549c7 b7b00e2 583ab5f e669631 9880f3d 583ab5f 9880f3d e669631 583ab5f 9880f3d 583ab5f e669631 583ab5f 9880f3d e669631 9880f3d 583ab5f e669631 645df58 583ab5f 9880f3d e669631 b7b00e2 9880f3d cd41f5f 9feb399 3cf2a70 9feb399 459766e cd41f5f 3057b36 cd41f5f 583ab5f 4c58984 db6a3b7 b2549c7 db6a3b7 cd41f5f bd46f72 db6a3b7 b2549c7 db6a3b7 4dd5dd7 e669631 4c58984 583ab5f 62addc9 583ab5f db6a3b7 b7b00e2 cd41f5f 583ab5f cd41f5f 583ab5f 4c58984 db6a3b7 583ab5f db6a3b7 583ab5f 4c58984 cd41f5f 62addc9 583ab5f db6a3b7 b7b00e2 583ab5f 4c58984 b7b00e2 583ab5f b7b00e2 583ab5f 62addc9 583ab5f b7b00e2 f6b07bb e669631 db6a3b7 4dd5dd7 e669631 bd46f72 4dd5dd7 bd46f72 4dd5dd7 bd46f72 4dd5dd7 db6a3b7 bd46f72 e669631 bd46f72 4dd5dd7 e669631 b7b00e2 db6a3b7 4c58984 e669631 62addc9 db6a3b7 4dd5dd7 ba57f56 4dd5dd7 ba57f56 4dd5dd7 db6a3b7 4dd5dd7 b7b00e2 db6a3b7 4dd5dd7 cd41f5f 4dd5dd7 cd41f5f 4dd5dd7 e669631 62addc9 db6a3b7 4dd5dd7 b7b00e2 583ab5f db6a3b7 4dd5dd7 b7b00e2 583ab5f db6a3b7 c39d31f db6a3b7 e669631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import os
import pathlib
import tempfile
os.environ["SPCONV_ALGO"] = "native"
import gradio as gr
import imageio
import numpy as np
import spaces
import torch
from easydict import EasyDict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import postprocessing_utils, render_utils
DESCRIPTION = """\
# Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
- Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
- If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
"""
MAX_SEED = np.iinfo(np.int32).max
TEMP_DIR = gr.utils.get_upload_folder()
pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
pipeline.cuda()
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
def preprocess_image(image: Image.Image) -> Image.Image:
"""Preprocess the input image for 3D model generation.
This function performs several preprocessing steps to prepare the image for 3D model generation:
1. Handles alpha channel or removes background if not present
2. Centers and crops the object
3. Normalizes the image size to 518x518 pixels
4. Applies proper alpha channel processing
Args:
image (Image.Image): The input image to be preprocessed. Can be either RGB or RGBA format.
Returns:
Image.Image: The preprocessed image with the following characteristics:
- Size: 518x518 pixels
- Format: RGBA
- Background: Removed
- Object: Centered and properly scaled
Raises:
None: This function does not raise any exceptions.
Note:
The preprocessing is handled by the pipeline's internal preprocessing function,
which uses rembg for background removal if needed.
"""
return pipeline.preprocess_image(image)
def save_state_to_file(gs: Gaussian, mesh: MeshExtractResult, output_path: str) -> None:
state = {
"gaussian": {
**gs.init_params,
"_xyz": gs._xyz,
"_features_dc": gs._features_dc,
"_scaling": gs._scaling,
"_rotation": gs._rotation,
"_opacity": gs._opacity,
},
"mesh": {
"vertices": mesh.vertices,
"faces": mesh.faces,
},
}
torch.save(state, output_path)
def load_state_from_file(state_path: str) -> tuple[Gaussian, EasyDict]:
state = torch.load(state_path)
gs = Gaussian(
aabb=state["gaussian"]["aabb"],
sh_degree=state["gaussian"]["sh_degree"],
mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
scaling_bias=state["gaussian"]["scaling_bias"],
opacity_bias=state["gaussian"]["opacity_bias"],
scaling_activation=state["gaussian"]["scaling_activation"],
)
gs._xyz = state["gaussian"]["_xyz"]
gs._features_dc = state["gaussian"]["_features_dc"]
gs._scaling = state["gaussian"]["_scaling"]
gs._rotation = state["gaussian"]["_rotation"]
gs._opacity = state["gaussian"]["_opacity"]
mesh = EasyDict(
vertices=state["mesh"]["vertices"],
faces=state["mesh"]["faces"],
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""Determine and return the random seed to use for model generation or sampling.
- MAX_SEED is the maximum value for a 32-bit integer (np.iinfo(np.int32).max).
- This function is typically used to ensure reproducibility or to introduce randomness in model generation.
- The random seed affects the stochastic processes in downstream model inference or sampling.
Args:
randomize_seed (bool): If True, a random seed (an integer in [0, MAX_SEED)) is generated using NumPy's default random number generator. If False, the provided seed argument is returned as-is.
seed (int): The seed value to use if randomize_seed is False.
Returns:
int: The selected seed value. If randomize_seed is True, a randomly generated integer; otherwise, the value of the seed argument.
"""
rng = np.random.default_rng()
return int(rng.integers(0, MAX_SEED)) if randomize_seed else seed
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
) -> tuple[str, str]:
"""Convert an image to a 3D model.
This function takes an input image and generates a 3D model using a two-stage process
with separate parameters for each stage. It also generates a preview video that combines
color and normal map renderings of the 3D model.
Args:
image (Image.Image): The input image.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
Returns:
tuple[str, str]: A tuple containing:
- str: Path to the state file (.pth) containing the 3D model data
- str: Path to the preview video file (.mp4) showing the 3D model rotation
Note:
The generated files are saved as temporary files that will not be automatically
deleted. It is the caller's responsibility to manage these files.
"""
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs["gaussian"][0], num_frames=120)["color"]
video_geo = render_utils.render_video(outputs["mesh"][0], num_frames=120)["normal"]
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
with (
tempfile.NamedTemporaryFile(suffix=".pth", dir=TEMP_DIR, delete=False) as state_file,
tempfile.NamedTemporaryFile(suffix=".mp4", dir=TEMP_DIR, delete=False) as video_file,
):
save_state_to_file(outputs["gaussian"][0], outputs["mesh"][0], state_file.name)
torch.cuda.empty_cache()
imageio.mimsave(video_file.name, video, fps=15)
return state_file.name, video_file.name
@spaces.GPU(duration=90)
def extract_glb(
state_path: str,
mesh_simplify: float,
texture_size: int,
) -> str:
"""Extract a GLB file from the 3D model.
Args:
state_path (str): The path to the pickle file that contains the state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
gs, mesh = load_state_from_file(state_path)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
torch.cuda.empty_cache()
with tempfile.NamedTemporaryFile(suffix=".glb", dir=TEMP_DIR, delete=False) as glb_file:
glb.export(glb_file.name)
return glb_file.name
@spaces.GPU
def extract_gaussian(state_path: str) -> str:
"""Extract a Gaussian file from the 3D model.
Args:
state_path (str): The path to the pickle file that contains the state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
gs, _ = load_state_from_file(state_path)
with tempfile.NamedTemporaryFile(suffix=".ply", dir=TEMP_DIR, delete=False) as gaussian_file:
gs.save_ply(gaussian_file.name)
return gaussian_file.name
with gr.Blocks(css_paths="style.css", delete_cache=(600, 600)) as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image_prompt = gr.Image(
label="Image Prompt",
format="png",
image_mode="RGBA",
type="pil",
height=300,
)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(
label="Guidance Strength", minimum=0.0, maximum=10.0, step=0.1, value=7.5
)
ss_sampling_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, step=1, value=12)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(
label="Guidance Strength", minimum=0.0, maximum=10.0, step=0.1, value=3.0
)
slat_sampling_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, step=1, value=12)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(label="Simplify", minimum=0.9, maximum=0.98, step=0.01, value=0.95)
texture_size = gr.Slider(label="Texture Size", minimum=512, maximum=2048, step=512, value=1024)
with gr.Row():
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)
state_file = gr.File(visible=False)
examples = gr.Examples(
examples=sorted(pathlib.Path("assets/example_image").glob("*.png")),
fn=preprocess_image,
inputs=image_prompt,
outputs=image_prompt,
run_on_click=True,
examples_per_page=64,
)
image_prompt.upload(
fn=preprocess_image,
inputs=image_prompt,
outputs=image_prompt,
)
generate_btn.click(
fn=get_seed,
inputs=[randomize_seed, seed],
outputs=seed,
).then(
fn=image_to_3d,
inputs=[
image_prompt,
seed,
ss_guidance_strength,
ss_sampling_steps,
slat_guidance_strength,
slat_sampling_steps,
],
outputs=[state_file, video_output],
).then(
fn=lambda: (gr.Button(interactive=True), gr.Button(interactive=True)),
outputs=[extract_glb_btn, extract_gs_btn],
api_name=False,
)
video_output.clear(
fn=lambda: (gr.Button(interactive=False), gr.Button(interactive=False)),
outputs=[extract_glb_btn, extract_gs_btn],
api_name=False,
)
extract_glb_btn.click(
fn=extract_glb,
inputs=[state_file, mesh_simplify, texture_size],
outputs=model_output,
)
extract_gs_btn.click(
fn=extract_gaussian,
inputs=state_file,
outputs=model_output,
)
if __name__ == "__main__":
demo.launch(mcp_server=True)
|