File size: 12,052 Bytes
db6a3b7
ba57f56
583ab5f
e669631
 
 
 
db6a3b7
e669631
 
 
645df58
db6a3b7
e669631
db6a3b7
9880f3d
e669631
db6a3b7
f6b07bb
 
 
 
 
 
 
bd46f72
62addc9
bd46f72
02ee8b8
 
 
 
 
b7b00e2
b2549c7
db6a3b7
b2549c7
 
 
 
 
e669631
b7b00e2
b2549c7
e669631
b7b00e2
b2549c7
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
b2549c7
b7b00e2
 
583ab5f
 
e669631
9880f3d
583ab5f
 
 
 
 
9880f3d
e669631
583ab5f
 
9880f3d
 
583ab5f
e669631
 
583ab5f
 
9880f3d
e669631
 
 
 
 
 
9880f3d
583ab5f
 
 
 
 
e669631
645df58
583ab5f
 
9880f3d
e669631
b7b00e2
9880f3d
 
cd41f5f
9feb399
 
3cf2a70
 
 
 
9feb399
 
 
 
 
 
 
 
459766e
cd41f5f
 
3057b36
cd41f5f
 
 
 
 
 
 
583ab5f
4c58984
db6a3b7
b2549c7
 
 
 
db6a3b7
cd41f5f
bd46f72
 
 
 
 
db6a3b7
 
b2549c7
 
 
 
 
 
 
db6a3b7
4dd5dd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e669631
 
4c58984
583ab5f
 
62addc9
 
583ab5f
 
 
 
 
db6a3b7
 
b7b00e2
cd41f5f
583ab5f
cd41f5f
 
583ab5f
4c58984
db6a3b7
 
583ab5f
db6a3b7
 
 
 
 
 
583ab5f
4c58984
cd41f5f
62addc9
583ab5f
 
db6a3b7
 
b7b00e2
583ab5f
4c58984
b7b00e2
 
583ab5f
b7b00e2
 
 
 
583ab5f
62addc9
583ab5f
 
b7b00e2
 
f6b07bb
 
e669631
db6a3b7
 
4dd5dd7
 
 
 
 
 
 
e669631
bd46f72
4dd5dd7
bd46f72
 
 
4dd5dd7
 
 
 
bd46f72
 
4dd5dd7
 
 
 
db6a3b7
bd46f72
e669631
bd46f72
4dd5dd7
 
e669631
b7b00e2
 
 
 
 
 
db6a3b7
 
4c58984
e669631
 
62addc9
db6a3b7
4dd5dd7
ba57f56
4dd5dd7
ba57f56
 
4dd5dd7
 
 
db6a3b7
 
4dd5dd7
 
 
b7b00e2
db6a3b7
 
4dd5dd7
cd41f5f
4dd5dd7
cd41f5f
4dd5dd7
e669631
 
 
 
 
 
 
 
62addc9
db6a3b7
4dd5dd7
b7b00e2
583ab5f
db6a3b7
 
 
4dd5dd7
b7b00e2
583ab5f
db6a3b7
 
c39d31f
 
 
 
 
 
 
 
 
 
db6a3b7
 
e669631
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os
import pathlib
import tempfile

os.environ["SPCONV_ALGO"] = "native"

import gradio as gr
import imageio
import numpy as np
import spaces
import torch
from easydict import EasyDict
from PIL import Image

from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import postprocessing_utils, render_utils

DESCRIPTION = """\
# Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)

- Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
- If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
"""

MAX_SEED = np.iinfo(np.int32).max
TEMP_DIR = gr.utils.get_upload_folder()

pipeline = TrellisImageTo3DPipeline.from_pretrained("microsoft/TRELLIS-image-large")
pipeline.cuda()
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))  # Preload rembg


def preprocess_image(image: Image.Image) -> Image.Image:
    """Preprocess the input image for 3D model generation.

    This function performs several preprocessing steps to prepare the image for 3D model generation:
    1. Handles alpha channel or removes background if not present
    2. Centers and crops the object
    3. Normalizes the image size to 518x518 pixels
    4. Applies proper alpha channel processing

    Args:
        image (Image.Image): The input image to be preprocessed. Can be either RGB or RGBA format.

    Returns:
        Image.Image: The preprocessed image with the following characteristics:
            - Size: 518x518 pixels
            - Format: RGBA
            - Background: Removed
            - Object: Centered and properly scaled

    Raises:
        None: This function does not raise any exceptions.

    Note:
        The preprocessing is handled by the pipeline's internal preprocessing function,
        which uses rembg for background removal if needed.
    """
    return pipeline.preprocess_image(image)


def save_state_to_file(gs: Gaussian, mesh: MeshExtractResult, output_path: str) -> None:
    state = {
        "gaussian": {
            **gs.init_params,
            "_xyz": gs._xyz,
            "_features_dc": gs._features_dc,
            "_scaling": gs._scaling,
            "_rotation": gs._rotation,
            "_opacity": gs._opacity,
        },
        "mesh": {
            "vertices": mesh.vertices,
            "faces": mesh.faces,
        },
    }
    torch.save(state, output_path)


def load_state_from_file(state_path: str) -> tuple[Gaussian, EasyDict]:
    state = torch.load(state_path)
    gs = Gaussian(
        aabb=state["gaussian"]["aabb"],
        sh_degree=state["gaussian"]["sh_degree"],
        mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
        scaling_bias=state["gaussian"]["scaling_bias"],
        opacity_bias=state["gaussian"]["opacity_bias"],
        scaling_activation=state["gaussian"]["scaling_activation"],
    )
    gs._xyz = state["gaussian"]["_xyz"]
    gs._features_dc = state["gaussian"]["_features_dc"]
    gs._scaling = state["gaussian"]["_scaling"]
    gs._rotation = state["gaussian"]["_rotation"]
    gs._opacity = state["gaussian"]["_opacity"]

    mesh = EasyDict(
        vertices=state["mesh"]["vertices"],
        faces=state["mesh"]["faces"],
    )

    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """Determine and return the random seed to use for model generation or sampling.

    - MAX_SEED is the maximum value for a 32-bit integer (np.iinfo(np.int32).max).
    - This function is typically used to ensure reproducibility or to introduce randomness in model generation.
    - The random seed affects the stochastic processes in downstream model inference or sampling.

    Args:
        randomize_seed (bool): If True, a random seed (an integer in [0, MAX_SEED)) is generated using NumPy's default random number generator. If False, the provided seed argument is returned as-is.
        seed (int): The seed value to use if randomize_seed is False.

    Returns:
        int: The selected seed value. If randomize_seed is True, a randomly generated integer; otherwise, the value of the seed argument.
    """
    rng = np.random.default_rng()
    return int(rng.integers(0, MAX_SEED)) if randomize_seed else seed


@spaces.GPU
def image_to_3d(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
) -> tuple[str, str]:
    """Convert an image to a 3D model.

    This function takes an input image and generates a 3D model using a two-stage process
    with separate parameters for each stage. It also generates a preview video that combines
    color and normal map renderings of the 3D model.

    Args:
        image (Image.Image): The input image.
        seed (int): The random seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.

    Returns:
        tuple[str, str]: A tuple containing:
            - str: Path to the state file (.pth) containing the 3D model data
            - str: Path to the preview video file (.mp4) showing the 3D model rotation

    Note:
        The generated files are saved as temporary files that will not be automatically
        deleted. It is the caller's responsibility to manage these files.
    """
    outputs = pipeline.run(
        image,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )

    video = render_utils.render_video(outputs["gaussian"][0], num_frames=120)["color"]
    video_geo = render_utils.render_video(outputs["mesh"][0], num_frames=120)["normal"]
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]

    with (
        tempfile.NamedTemporaryFile(suffix=".pth", dir=TEMP_DIR, delete=False) as state_file,
        tempfile.NamedTemporaryFile(suffix=".mp4", dir=TEMP_DIR, delete=False) as video_file,
    ):
        save_state_to_file(outputs["gaussian"][0], outputs["mesh"][0], state_file.name)
        torch.cuda.empty_cache()
        imageio.mimsave(video_file.name, video, fps=15)
        return state_file.name, video_file.name


@spaces.GPU(duration=90)
def extract_glb(
    state_path: str,
    mesh_simplify: float,
    texture_size: int,
) -> str:
    """Extract a GLB file from the 3D model.

    Args:
        state_path (str): The path to the pickle file that contains the state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the extracted GLB file.
    """
    gs, mesh = load_state_from_file(state_path)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    torch.cuda.empty_cache()
    with tempfile.NamedTemporaryFile(suffix=".glb", dir=TEMP_DIR, delete=False) as glb_file:
        glb.export(glb_file.name)
        return glb_file.name


@spaces.GPU
def extract_gaussian(state_path: str) -> str:
    """Extract a Gaussian file from the 3D model.

    Args:
        state_path (str): The path to the pickle file that contains the state of the generated 3D model.

    Returns:
        str: The path to the extracted Gaussian file.
    """
    gs, _ = load_state_from_file(state_path)
    with tempfile.NamedTemporaryFile(suffix=".ply", dir=TEMP_DIR, delete=False) as gaussian_file:
        gs.save_ply(gaussian_file.name)
        return gaussian_file.name


with gr.Blocks(css_paths="style.css", delete_cache=(600, 600)) as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Row():
        with gr.Column():
            image_prompt = gr.Image(
                label="Image Prompt",
                format="png",
                image_mode="RGBA",
                type="pil",
                height=300,
            )

            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(
                        label="Guidance Strength", minimum=0.0, maximum=10.0, step=0.1, value=7.5
                    )
                    ss_sampling_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, step=1, value=12)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(
                        label="Guidance Strength", minimum=0.0, maximum=10.0, step=0.1, value=3.0
                    )
                    slat_sampling_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=50, step=1, value=12)

            generate_btn = gr.Button("Generate")

            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(label="Simplify", minimum=0.9, maximum=0.98, step=0.01, value=0.95)
                texture_size = gr.Slider(label="Texture Size", minimum=512, maximum=2048, step=512, value=1024)

            with gr.Row():
                extract_glb_btn = gr.Button("Extract GLB", interactive=False)
                extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
                        """)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = gr.Model3D(label="Extracted GLB/Gaussian", height=300)

    state_file = gr.File(visible=False)

    examples = gr.Examples(
        examples=sorted(pathlib.Path("assets/example_image").glob("*.png")),
        fn=preprocess_image,
        inputs=image_prompt,
        outputs=image_prompt,
        run_on_click=True,
        examples_per_page=64,
    )

    image_prompt.upload(
        fn=preprocess_image,
        inputs=image_prompt,
        outputs=image_prompt,
    )

    generate_btn.click(
        fn=get_seed,
        inputs=[randomize_seed, seed],
        outputs=seed,
    ).then(
        fn=image_to_3d,
        inputs=[
            image_prompt,
            seed,
            ss_guidance_strength,
            ss_sampling_steps,
            slat_guidance_strength,
            slat_sampling_steps,
        ],
        outputs=[state_file, video_output],
    ).then(
        fn=lambda: (gr.Button(interactive=True), gr.Button(interactive=True)),
        outputs=[extract_glb_btn, extract_gs_btn],
        api_name=False,
    )

    video_output.clear(
        fn=lambda: (gr.Button(interactive=False), gr.Button(interactive=False)),
        outputs=[extract_glb_btn, extract_gs_btn],
        api_name=False,
    )

    extract_glb_btn.click(
        fn=extract_glb,
        inputs=[state_file, mesh_simplify, texture_size],
        outputs=model_output,
    )
    extract_gs_btn.click(
        fn=extract_gaussian,
        inputs=state_file,
        outputs=model_output,
    )

if __name__ == "__main__":
    demo.launch(mcp_server=True)