File size: 13,375 Bytes
8fbac9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145817
 
 
 
 
 
 
 
 
 
 
 
8fbac9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4181a28
 
af7b806
8fbac9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbb0f4
8fbac9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
from .clip import *
from .clip_gradcam import ClipGradcam
import torch
import numpy as np
from PIL import Image
import torchvision
from functools import reduce


def factors(n):
    return set(
        reduce(
            list.__add__,
            ([i, n // i] for i in range(1, int(n**0.5) + 1) if n % i == 0),
        )
    )


saliency_configs = {
    "ours": lambda img_dim: {
        "distractor_labels": {},
        "horizontal_flipping": True,
        "augmentations": 5,
        "imagenet_prompt_ensemble": False,
        "positive_attn_only": True,
        "cropping_augmentations": [
            {"tile_size": img_dim, "stride": img_dim // 4},
            {"tile_size": int(img_dim * 2 / 3), "stride": int(img_dim * 2 / 3) // 4},
            {"tile_size": img_dim // 2, "stride": (img_dim // 2) // 4},
            {"tile_size": img_dim // 4, "stride": (img_dim // 4) // 4},
        ],
    },
    "ours_fast": lambda img_dim: {
        "distractor_labels": {},
        "horizontal_flipping": True,
        "augmentations": 2,
        "imagenet_prompt_ensemble": False,
        "positive_attn_only": True,
        "cropping_augmentations": [
            {"tile_size": img_dim, "stride": img_dim // 4},
            {"tile_size": int(img_dim * 2 / 3), "stride": int(img_dim * 2 / 3) // 4},
            {"tile_size": img_dim // 2, "stride": (img_dim // 2) // 4},
        ],
    },
    "chefer_et_al": lambda img_dim: {
        "distractor_labels": {},
        "horizontal_flipping": False,
        "augmentations": 0,
        "imagenet_prompt_ensemble": False,
        "positive_attn_only": True,
        "cropping_augmentations": [{"tile_size": img_dim, "stride": img_dim // 4}],
    },
}


class ClipWrapper:
    # SINGLETON WRAPPER
    clip_model = None
    clip_preprocess = None
    clip_gradcam = None
    lavt = None
    device = None
    jittering_transforms = None

    def __init__(self, clip_model_type, device, **kwargs):
        ClipWrapper.device = device
        ClipWrapper.jittering_transforms = torchvision.transforms.ColorJitter(
            brightness=0.6, contrast=0.6, saturation=0.6, hue=0.1
        )
        ClipWrapper.clip_model, ClipWrapper.clip_preprocess = load(
            clip_model_type, ClipWrapper.device, **kwargs
        )
        ClipWrapper.clip_gradcam = ClipGradcam(
            clip_model_name=clip_model_type,
            classes=[""],
            templates=["{}"],
            device=ClipWrapper.device,
            **kwargs
        )

    @classmethod
    def check_initialized(cls, clip_model_type="ViT-B/32", **kwargs):
        if cls.clip_gradcam is None:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            ClipWrapper(clip_model_type=clip_model_type, device=device, **kwargs)
            print("using", device)

    @classmethod
    def get_clip_text_feature(cls, string):
        ClipWrapper.check_initialized()
        with torch.no_grad():
            return (
                cls.clip_model.encode_text(
                    tokenize(string, context_length=77).to(cls.device)
                )
                .squeeze()
                .cpu()
                .numpy()
            )

    @classmethod
    def get_visual_feature(cls, rgb, tile_attn_mask, device=None):
        if device is None:
            device = ClipWrapper.device
        ClipWrapper.check_initialized()
        rgb = ClipWrapper.clip_preprocess(Image.fromarray(rgb)).unsqueeze(0)
        with torch.no_grad():
            clip_feature = ClipWrapper.clip_model.encode_image(
                rgb.to(ClipWrapper.device), tile_attn_mask=tile_attn_mask
            ).squeeze()
            return clip_feature.to(device)

    @classmethod
    def get_clip_saliency(
        cls,
        img,
        text_labels,
        prompts,
        distractor_labels=set(),
        use_lavt=False,
        **kwargs
    ):
        cls.check_initialized()
        if use_lavt:
            return cls.lavt.localize(img=img, prompts=text_labels)
        cls.clip_gradcam.templates = prompts
        cls.clip_gradcam.set_classes(text_labels)
        text_label_features = torch.stack(
            list(cls.clip_gradcam.class_to_language_feature.values()), dim=0
        )
        text_label_features = text_label_features.squeeze(dim=-1).cpu()
        text_maps = cls.get_clip_saliency_convolve(
            img=img, text_labels=text_labels, **kwargs
        )
        if len(distractor_labels) > 0:
            distractor_labels = set(distractor_labels) - set(text_labels)
            cls.clip_gradcam.set_classes(list(distractor_labels))
            distractor_maps = cls.get_clip_saliency_convolve(
                img=img, text_labels=list(distractor_labels), **kwargs
            )
            text_maps -= distractor_maps.mean(dim=0)
        text_maps = text_maps.cpu()
        return text_maps, text_label_features.squeeze(dim=-1)

    @classmethod
    def get_clip_saliency_convolve(
        cls,
        text_labels,
        horizontal_flipping=False,
        positive_attn_only: bool = False,
        tile_batch_size=32,
        prompt_batch_size=32,
        tile_interpolate_batch_size=16,
        **kwargs
    ):
        cls.clip_gradcam.positive_attn_only = positive_attn_only
        tiles, tile_imgs, counts, tile_sizes = cls.create_tiles(**kwargs)
        outputs = {
            k: torch.zeros(
                [len(text_labels)] + list(count.shape), device=cls.device
            ).half()
            for k, count in counts.items()
        }
        tile_gradcams = torch.cat(
            [
                torch.cat(
                    [
                        cls.clip_gradcam(
                            x=tile_imgs[tile_idx : tile_idx + tile_batch_size],
                            o=text_labels[prompt_idx : prompt_idx + prompt_batch_size],
                        )
                        for tile_idx in np.arange(0, len(tile_imgs), tile_batch_size)
                    ],
                    dim=1,
                )
                for prompt_idx in np.arange(0, len(text_labels), prompt_batch_size)
            ],
            dim=0,
        )
        if horizontal_flipping:
            flipped_tile_imgs = tile_imgs[
                ..., torch.flip(torch.arange(0, tile_imgs.shape[-1]), dims=[0])
            ]
            flipped_tile_gradcams = torch.cat(
                [
                    torch.cat(
                        [
                            cls.clip_gradcam(
                                x=flipped_tile_imgs[
                                    tile_idx : tile_idx + tile_batch_size
                                ],
                                o=text_labels[
                                    prompt_idx : prompt_idx + prompt_batch_size
                                ],
                            )
                            for tile_idx in np.arange(
                                0, len(tile_imgs), tile_batch_size
                            )
                        ],
                        dim=1,
                    )
                    for prompt_idx in np.arange(0, len(text_labels), prompt_batch_size)
                ],
                dim=0,
            )
            with torch.no_grad():
                flipped_tile_gradcams = flipped_tile_gradcams[
                    ...,
                    torch.flip(
                        torch.arange(0, flipped_tile_gradcams.shape[-1]), dims=[0]
                    ),
                ]
                tile_gradcams = (tile_gradcams + flipped_tile_gradcams) / 2
                del flipped_tile_gradcams
        with torch.no_grad():
            torch.cuda.empty_cache()
            for tile_size in np.unique(tile_sizes):
                tile_size_mask = tile_sizes == tile_size
                curr_size_grads = tile_gradcams[:, tile_size_mask]
                curr_size_tiles = tiles[tile_size_mask]
                for tile_idx in np.arange(
                    0, curr_size_grads.shape[1], tile_interpolate_batch_size
                ):
                    resized_tiles = torch.nn.functional.interpolate(
                        curr_size_grads[
                            :, tile_idx : tile_idx + tile_interpolate_batch_size
                        ],
                        size=tile_size,
                        mode="bilinear",
                        align_corners=False,
                    )
                    for tile_idx, tile_slice in enumerate(
                        curr_size_tiles[
                            tile_idx : tile_idx + tile_interpolate_batch_size
                        ]
                    ):
                        outputs[tile_size][tile_slice] += resized_tiles[
                            :, tile_idx, ...
                        ]
            output = sum(
                output.float() / count
                for output, count in zip(outputs.values(), counts.values())
            ) / len(counts)
            del outputs, counts, tile_gradcams
            output = output.cpu()
            return output

    @classmethod
    def create_tiles(cls, img, augmentations, cropping_augmentations, **kwargs):
        assert type(img) == np.ndarray
        images = []
        cls.check_initialized()
        # compute image crops
        img_pil = Image.fromarray(img)
        images.append(np.array(img_pil))
        for _ in range(augmentations):
            images.append(np.array(cls.jittering_transforms(img_pil)))
        # for taking average
        counts = {
            crop_aug["tile_size"]: torch.zeros(img.shape[:2], device=cls.device).float()
            + 1e-5
            for crop_aug in cropping_augmentations
        }
        tiles = []
        tile_imgs = []
        tile_sizes = []
        for img in images:
            for crop_aug in cropping_augmentations:
                tile_size = crop_aug["tile_size"]
                stride = crop_aug["stride"]
                for y in np.arange(0, img.shape[1] - tile_size + 1, stride):
                    if y >= img.shape[0]:
                        continue
                    for x in np.arange(0, img.shape[0] - tile_size + 1, stride):
                        if x >= img.shape[1]:
                            continue
                        tile = (
                            slice(None, None),
                            slice(x, x + tile_size),
                            slice(y, y + tile_size),
                        )
                        tiles.append(tile)
                        counts[tile_size][tile[1:]] += 1
                        tile_sizes.append(tile_size)
                        # this is currently biggest bottle neck
                        tile_imgs.append(
                            cls.clip_gradcam.preprocess(
                                Image.fromarray(img[tiles[-1][1:]])
                            )
                        )
        tile_imgs = torch.stack(tile_imgs).to(cls.device)
        return np.array(tiles), tile_imgs, counts, np.array(tile_sizes)


imagenet_templates = [
    "a bad photo of a {}.",
    "a photo of many {}.",
    "a sculpture of a {}.",
    "a photo of the hard to see {}.",
    "a low resolution photo of the {}.",
    "a rendering of a {}.",
    "graffiti of a {}.",
    "a bad photo of the {}.",
    "a cropped photo of the {}.",
    "a tattoo of a {}.",
    "the embroidered {}.",
    "a photo of a hard to see {}.",
    "a bright photo of a {}.",
    "a photo of a clean {}.",
    "a photo of a dirty {}.",
    "a dark photo of the {}.",
    "a drawing of a {}.",
    "a photo of my {}.",
    "the plastic {}.",
    "a photo of the cool {}.",
    "a close-up photo of a {}.",
    "a black and white photo of the {}.",
    "a painting of the {}.",
    "a painting of a {}.",
    "a pixelated photo of the {}.",
    "a sculpture of the {}.",
    "a bright photo of the {}.",
    "a cropped photo of a {}.",
    "a plastic {}.",
    "a photo of the dirty {}.",
    "a jpeg corrupted photo of a {}.",
    "a blurry photo of the {}.",
    "a photo of the {}.",
    "a good photo of the {}.",
    "a rendering of the {}.",
    "a {} in a video game.",
    "a photo of one {}.",
    "a doodle of a {}.",
    "a close-up photo of the {}.",
    "a photo of a {}.",
    "the origami {}.",
    "the {} in a video game.",
    "a sketch of a {}.",
    "a doodle of the {}.",
    "a origami {}.",
    "a low resolution photo of a {}.",
    "the toy {}.",
    "a rendition of the {}.",
    "a photo of the clean {}.",
    "a photo of a large {}.",
    "a rendition of a {}.",
    "a photo of a nice {}.",
    "a photo of a weird {}.",
    "a blurry photo of a {}.",
    "a cartoon {}.",
    "art of a {}.",
    "a sketch of the {}.",
    "a embroidered {}.",
    "a pixelated photo of a {}.",
    "itap of the {}.",
    "a jpeg corrupted photo of the {}.",
    "a good photo of a {}.",
    "a plushie {}.",
    "a photo of the nice {}.",
    "a photo of the small {}.",
    "a photo of the weird {}.",
    "the cartoon {}.",
    "art of the {}.",
    "a drawing of the {}.",
    "a photo of the large {}.",
    "a black and white photo of a {}.",
    "the plushie {}.",
    "a dark photo of a {}.",
    "itap of a {}.",
    "graffiti of the {}.",
    "a toy {}.",
    "itap of my {}.",
    "a photo of a cool {}.",
    "a photo of a small {}.",
    "a tattoo of the {}.",
]

__all__ = ["ClipWrapper", "imagenet_templates"]