File size: 7,720 Bytes
28d4dca fd9a04a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import gradio as gr
import logging
import PyPDF2
from config import SHARE_GRADIO_WITH_PUBLIC_URL
from chains import qa_chain, summarization_chain
logger = logging.getLogger(__name__)
# Translation dictionary
TRANSLATIONS = {
"en": {
"title": "# 📚 Study Buddy: AI Learning Assistant",
"subtitle": "## 🤖 A smart, user-friendly chatbot for students!",
"summary_subtitle": "## 📄 Upload Notes for Summarization",
"chat_input_label": "Type your question here:",
"chat_placeholder": "e.g., Explain Newton's laws",
"chat_button_label": "Get Answer",
"summary_button_label": "Summarize Notes",
"upload_file_label": "Upload .txt or .pdf file",
"summary_output_label": "Summary",
"language_label": "Language / Langue",
"ai_response_label": "AI Response"
},
"fr": {
"title": "# 📚 Study Buddy: Assistant d'apprentissage IA",
"subtitle": "## 🤖 Un chatbot intelligent et convivial pour les étudiants!",
"summary_subtitle": "## 📄 Subir notas para resumir",
"chat_input_label": "Tapez votre question ici:",
"chat_placeholder": "ex : Expliquez les lois de Newton",
"chat_button_label": "Obtenir une réponse",
"summary_button_label": "Résumer les notes",
"upload_file_label": "Téléchargez un fichier .txt ou .pdf",
"summary_output_label": "Résumé",
"language_label": "Langue / Language",
"ai_response_label": "Réponse de l'IA"
}
}
# Function to process user queries
def chatbot_response(user_input, lang):
try:
response_output = qa_chain.invoke({"question": user_input})
response = response_output.content
logger.info("chatbot_response completed")
print("> chatbot_response completed")
return response
except Exception as e:
msg = f"Error : {e}"
logger.exception(msg)
print(msg)
return TRANSLATIONS[lang].get("error_message", "Sorry, an error occurred while processing your request.")
# Function to summarize notes
def summarize_pdf(pdf, lang):
try:
with open(pdf, "rb") as file:
reader = PyPDF2.PdfReader(file)
page = reader.pages[0] # Get the first page
text = page.extract_text()
print(text)
summary = summarize_text(text, lang)
logger.info("summarize_pdf completed")
print("> summarize_pdf completed")
return summary
except Exception as e:
msg = f"Error : {e}"
logger.exception(msg)
print(msg)
return TRANSLATIONS[lang].get("error_message", "Sorry, an error occurred while summarizing your notes.")
# Function to summarize notes
def summarize_text(text, lang):
try:
summary_output = summarization_chain.invoke({"document_text": text})
print(summary_output)
summary = summary_output.content
logger.info("summarize_text completed")
print("> summarize_text completed")
return summary
except Exception as e:
msg = f"Error : {e}"
logger.exception(msg)
print(msg)
return TRANSLATIONS[lang].get("error_message", "Sorry, an error occurred while summarizing your notes.")
# Function to update UI labels dynamically
def update_language(lang):
return (
TRANSLATIONS[lang]["title"],
TRANSLATIONS[lang]["subtitle"],
TRANSLATIONS[lang]["chat_input_label"],
TRANSLATIONS[lang]["chat_placeholder"],
TRANSLATIONS[lang]["chat_button_label"],
TRANSLATIONS[lang]["upload_file_label"],
TRANSLATIONS[lang]["summary_button_label"],
TRANSLATIONS[lang]["summary_output_label"],
TRANSLATIONS[lang]["ai_response_label"]
)
# Gradio UI
def create_interface():
with gr.Blocks(css="body { font-family: sans-serif; background-color: #f9f9f9; }") as study_buddy:
# Default to English
lang = "en"
title = gr.Markdown(f"{TRANSLATIONS[lang]['title']}")
with gr.Row():
with gr.Column():
gr.Markdown("", height=4)
language = gr.Radio(
choices=["en", "fr"],
value=lang,
label=TRANSLATIONS[lang]["language_label"]
)
gr.Markdown("", height=4)
subtitle = gr.Markdown(f"{TRANSLATIONS[lang]['subtitle']}")
chat_input = gr.Textbox(
# label=TRANSLATIONS[lang]["chat_input_label"]
label= "Type your question here: / Tapez votre question ici:",
lines=4,
placeholder=TRANSLATIONS[lang]["chat_placeholder"]
)
with gr.Column():
gr.Markdown("", height=4)
summary_subtitle = gr.Markdown(f"{TRANSLATIONS[lang]['summary_subtitle']}")
file_input = gr.File(label="File / Fichier",file_types=[".pdf", ".txt"])
file_label = gr.Markdown(TRANSLATIONS[lang]["upload_file_label"]) # Separate label
with gr.Row():
with gr.Column():
chat_button = gr.Button(TRANSLATIONS[lang]["chat_button_label"], variant="primary")
chat_output = gr.Textbox(
# label=TRANSLATIONS[lang]["ai_response_label"],
label = "AI Response / Réponse de l'IA",
lines=5, interactive=True
)
# Bind chatbot response function
chat_button.click(
chatbot_response,
inputs=[chat_input, language],
outputs=chat_output
)
with gr.Column():
summary_button = gr.Button(TRANSLATIONS[lang]["summary_button_label"], variant="primary")
summary_output = gr.Textbox(
# label=TRANSLATIONS[lang]["summary_output_label"],
label="Summary / Résumé",
lines=5,
interactive=True
)
# Bind summarization function
summary_button.click(
summarize_pdf,
inputs=[file_input, language],
outputs=summary_output
)
# Update labels dynamically when the language changes
def update_labels(lang):
return (
TRANSLATIONS[lang]["title"],
TRANSLATIONS[lang]["subtitle"],
TRANSLATIONS[lang]["summary_subtitle"],
TRANSLATIONS[lang]["chat_input_label"],
TRANSLATIONS[lang]["chat_placeholder"],
TRANSLATIONS[lang]["chat_button_label"],
TRANSLATIONS[lang]["summary_button_label"],
TRANSLATIONS[lang]["summary_output_label"],
TRANSLATIONS[lang]["ai_response_label"],
TRANSLATIONS[lang]["upload_file_label"]
)
language.change(
update_labels,
inputs=[language],
outputs=[
title, subtitle, summary_subtitle,
chat_input, chat_input,
chat_button,
summary_button, summary_output, chat_output, file_label # Update file label separately
]
)
return study_buddy
if __name__ == "__main__":
study_buddy = create_interface()
#study_buddy.launch(share=SHARE_GRADIO_WITH_PUBLIC_URL)
study_buddy.launch()
|