tommytracx's picture
Rename app (2).py to app.py
838dd37 verified
raw
history blame
5.24 kB
import gradio as gr
from PIL import Image
import torch
import soundfile as sf
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from urllib.request import urlopen
import spaces
# Define model path
model_path = "microsoft/Phi-4-multimodal-instruct"
# Load model and processor
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
_attn_implementation="eager",
)
# Define prompt structure
user_prompt = '<|user|>'
assistant_prompt = '<|assistant|>'
prompt_suffix = '<|end|>'
# Define inference function
@spaces.GPU
def process_input(input_type, file, question):
if not file or not question:
return "Please upload a file and provide a question for Gabi."
# Prepare the prompt
if input_type == "Image":
prompt = f'{user_prompt}<|image_1|>{question}{prompt_suffix}{assistant_prompt}'
# Open image from uploaded file
image = Image.open(file)
inputs = processor(text=prompt, images=image, return_tensors='pt').to(model.device)
elif input_type == "Audio":
prompt = f'{user_prompt}<|audio_1|>{question}{prompt_suffix}{assistant_prompt}'
# Read audio from uploaded file
audio, samplerate = sf.read(file)
inputs = processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(model.device)
else:
return "Invalid input type selected."
# Generate response
with torch.no_grad():
generate_ids = model.generate(
**inputs,
max_new_tokens=200,
num_logits_to_keep=0,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return response
# Gradio interface
with gr.Blocks(
title="Demo of how GABI could use a Multimodal",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
radius_size="lg",
),
) as demo:
# Insert Simli Widget
gr.HTML(
"""
<simli-widget
token="gAAAAABoEN7c6Z4ZuimkCDa7PmB5OgiOqepELAtSQYwUliuC1Zdw6LOPejI0g1XpnDWchiwNCDFDPMd80TVY2NXjnEx2zvnv3FUSXfT4C0dsJT8QTXAklaXyxtGSZD4sG53AFxo1jSzjQWXPnQHVfIU_ISxQqenWluJrCIL1jmEMZehyj3Hx4xpnJ3lOZs3LX4YPPxbUR_CEtIMcp7roc083OVvDJO1Ycxew9KJmiBLqFbiT6hBQUjLi3BLTcEZtl8HxV_YKaKCqZNP9dt73H4a5QTQ5UvypJK2JlQiCWeH6t8LfpON66Hr-aDuZOhTiKbzhNF27jlPHJh6uXyF_rUSRvaOArQJL0S9_x3PCTCi-HBOs9VcSBCe7ICCQFMdQrF1rk7EiGQhjrJeD57rrxZXw6SeOBQjK8-a8JEeS6Fzd7ORNiWXeSEtT46TbVq03X0e44E7hZY90sSwERr2DIeCA7CM5eeHXf_iU_NCl0OwCLgF2Yd6TFQgtT-bPmEnyye5oH-GvZ52U"
agentid="ff60ad9c-1afd-4b76-86a0-f94bf6e7b3b2"
position="right"
customimage="https://i.postimg.cc/K8PPT4GD/temp-Imagerldp-BZ.avif"
customtext="FaceTime GABI"
></simli-widget>
<script src="https://app.simli.com/simli-widget/index.js" async type="text/javascript"></script>
"""
)
gr.Markdown(
"""
# This Space is using Phi-4 as the LLM for the Gabi Multimodal Demo
Try uploading an **image** or **audio** file, ask Gabi a question, and get a response!
We want to leverage this to allow GABI to have the ability to interact and understand various contents.
"""
)
with gr.Row():
with gr.Column(scale=1):
input_type = gr.Radio(
choices=["Image", "Audio"],
label="Select Input Type",
value="Image",
)
file_input = gr.File(
label="Upload Your File",
file_types=["image", "audio"],
)
question_input = gr.Textbox(
label="Your Question",
placeholder="e.g., 'Gabi, what is shown in this image?' or 'Gabi, transcribe this audio.'",
lines=2,
)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=2):
output_text = gr.Textbox(
label="Gabi's Response",
placeholder="Gabi's response will appear here...",
lines=10,
interactive=False,
)
# Example section
with gr.Accordion("Examples", open=False):
gr.Markdown("Try these examples:")
gr.Examples(
examples=[
["Image", "https://www.ilankelman.org/stopsigns/australia.jpg", "Gabi, what is shown in this image?"],
["Audio", "https://upload.wikimedia.org/wikipedia/commons/b/b0/Barbara_Sahakian_BBC_Radio4_The_Life_Scientific_29_May_2012_b01j5j24.flac", "Gabi, transcribe the audio to text."],
],
inputs=[input_type, file_input, question_input],
outputs=output_text,
fn=process_input,
cache_examples=False,
)
# Connect the submit button
submit_btn.click(
fn=process_input,
inputs=[input_type, file_input, question_input],
outputs=output_text,
)
# Launch the demo
demo.launch()