File size: 5,735 Bytes
e3a0e6a
 
 
 
b0aa032
e3a0e6a
 
b0aa032
 
 
 
 
e3a0e6a
 
 
 
 
 
 
 
 
 
 
 
b0aa032
 
 
 
e3a0e6a
 
 
 
b0aa032
 
 
 
e3a0e6a
 
 
233531a
e3a0e6a
b0aa032
e3a0e6a
 
b0aa032
 
 
 
 
e3a0e6a
b0aa032
e3a0e6a
 
b0aa032
 
 
 
 
e3a0e6a
b0aa032
e3a0e6a
 
 
b0aa032
e3a0e6a
 
 
 
 
 
 
 
 
 
 
 
 
b0aa032
 
 
 
e3a0e6a
 
 
 
 
 
 
 
b0aa032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a0e6a
 
b0aa032
 
e3a0e6a
 
b0aa032
e3a0e6a
 
 
 
 
 
 
 
 
 
 
 
 
b0aa032
e3a0e6a
 
 
 
 
 
 
b0aa032
e3a0e6a
 
 
 
b0aa032
e3a0e6a
b0aa032
e3a0e6a
 
b0aa032
 
e3a0e6a
 
b0aa032
e3a0e6a
 
 
b0aa032
e3a0e6a
 
 
 
 
 
b0aa032
 
 
 
e3a0e6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
from PIL import Image
import torch
import soundfile as sf
from transformers import AutoModelForCausalLM, AutoProcessor
from urllib.request import urlopen
import spaces
import os

# ==============================
# Model and Processor Loading
# ==============================

model_path = "microsoft/Phi-4-multimodal-instruct"

processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype="auto",
    trust_remote_code=True,
    _attn_implementation="eager",
)

# ==============================
# Prompt Templates
# ==============================

user_prompt = '<|user|>'
assistant_prompt = '<|assistant|>'
prompt_suffix = '<|end|>'

# ==============================
# Inference Function
# ==============================

@spaces.GPU
def process_input(input_type, file, question):
    if not file or not question:
        return "Please upload a file and provide a question."

    # Prepare the multimodal prompt
    if input_type == "Image":
        prompt = f'{user_prompt}<|image_1|>{question}{prompt_suffix}{assistant_prompt}'
        # Handle file or URL
        if isinstance(file, str) and file.startswith("http"):
            image = Image.open(urlopen(file))
        else:
            image = Image.open(file.name if hasattr(file, "name") else file)
        inputs = processor(text=prompt, images=image, return_tensors='pt').to(model.device)

    elif input_type == "Audio":
        prompt = f'{user_prompt}<|audio_1|>{question}{prompt_suffix}{assistant_prompt}'
        if isinstance(file, str) and file.startswith("http"):
            audio_file = urlopen(file)
            audio, samplerate = sf.read(audio_file)
        else:
            audio, samplerate = sf.read(file.name if hasattr(file, "name") else file)
        inputs = processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(model.device)

    else:
        return "Invalid input type selected."

    # Generate the response
    with torch.no_grad():
        generate_ids = model.generate(
            **inputs,
            max_new_tokens=200,
            num_logits_to_keep=0,
        )
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = processor.batch_decode(
        generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )[0]

    return response

# ==============================
# Gradio UI Setup
# ==============================

with gr.Blocks(
    title="Demo of how GABI could use a Multimodal",
    theme=gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="gray",
        radius_size="lg",
    ),
) as demo:

    # Insert Simli FaceTime Widget
    gr.HTML(
        """
        <simli-widget 
            token="gAAAAABoEN7c6Z4ZuimkCDa7PmB5OgiOqepELAtSQYwUliuC1Zdw6LOPejI0g1XpnDWchiwNCDFDPMd80TVY2NXjnEx2zvnv3FUSXfT4C0dsJT8QTXAklaXyxtGSZD4sG53AFxo1jSzjQWXPnQHVfIU_ISxQqenWluJrCIL1jmEMZehyj3Hx4xpnJ3lOZs3LX4YPPxbUR_CEtIMcp7roc083OVvDJO1Ycxew9KJmiBLqFbiT6hBQUjLi3BLTcEZtl8HxV_YKaKCqZNP9dt73H4a5QTQ5UvypJK2JlQiCWeH6t8LfpON66Hr-aDuZOhTiKbzhNF27jlPHJh6uXyF_rUSRvaOArQJL0S9_x3PCTCi-HBOs9VcSBCe7ICCQFMdQrF1rk7EiGQhjrJeD57rrxZXw6SeOBQjK8-a8JEeS6Fzd7ORNiWXeSEtT46TbVq03X0e44E7hZY90sSwERr2DIeCA7CM5eeHXf_iU_NCl0OwCLgF2Yd6TFQgtT-bPmEnyye5oH-GvZ52U" 
            agentid="ff60ad9c-1afd-4b76-86a0-f94bf6e7b3b2" 
            position="right" 
            customimage="https://i.postimg.cc/K8PPT4GD/temp-Imagerldp-BZ.avif" 
            customtext="FaceTime GABI"
        ></simli-widget>
        <script src="https://app.simli.com/simli-widget/index.js" async type="text/javascript"></script>
        """
    )

    # Header
    gr.Markdown(
        """
        # Multimodal Demo - Powered by GABI using Phi-4
        Upload an **image** or **audio** file, ask a question, and GABI will respond intelligently!
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            input_type = gr.Radio(
                choices=["Image", "Audio"],
                label="Select Input Type",
                value="Image",
            )
            file_input = gr.File(
                label="Upload Your File",
                file_types=["image", "audio"],
            )
            question_input = gr.Textbox(
                label="Your Question",
                placeholder="e.g., 'What is shown in this image?' or 'Transcribe this audio.'",
                lines=2,
            )
            submit_btn = gr.Button("Submit", variant="primary")
        
        with gr.Column(scale=2):
            output_text = gr.Textbox(
                label="Gabi's Response",
                placeholder="Gabi's answer will appear here...",
                lines=10,
                interactive=False,
            )

    # Example Usage
    with gr.Accordion("Examples", open=False):
        gr.Markdown("Fill the fields using an example, then click **Submit** manually:")
        gr.Examples(
            examples=[
                ["Image", "https://www.ilankelman.org/stopsigns/australia.jpg", "What is shown in this image?"],
                ["Audio", "https://upload.wikimedia.org/wikipedia/commons/b/b0/Barbara_Sahakian_BBC_Radio4_The_Life_Scientific_29_May_2012_b01j5j24.flac", "Transcribe the audio to text."],
            ],
            inputs=[input_type, file_input, question_input],
            outputs=None,
            cache_examples=False,
        )

    # Submit Button Binding
    submit_btn.click(
        fn=process_input,
        inputs=[input_type, file_input, question_input],
        outputs=output_text,
    )

# ==============================
# Launch App
# ==============================

demo.launch()