huntrezz commited on
Commit
a67ce24
·
verified ·
1 Parent(s): cafea28

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -33,7 +33,7 @@ processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
33
 
34
  color_map = torch.from_numpy(cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)).to(device)
35
 
36
- input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device)
37
 
38
  def preprocess_image(image):
39
  return cv2.resize(image, (128, 72), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0
@@ -49,13 +49,10 @@ def process_frame(image):
49
  depth_map = predicted_depth.squeeze()
50
 
51
  # Discretization on GPU
52
- num_bins = 1000
53
- depth_min, depth_max = depth_map.min(), depth_map.max()
54
- bins = torch.linspace(depth_min, depth_max, num_bins, device=device)
55
- depth_map = torch.bucketize(depth_map, bins)
56
 
57
- depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
58
- depth_map = (depth_map * 255).byte()
59
  depth_map_colored = color_map[depth_map]
60
 
61
  return cv2.cvtColor(depth_map_colored.cpu().numpy(), cv2.COLOR_BGR2RGB)
 
33
 
34
  color_map = torch.from_numpy(cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)).to(device)
35
 
36
+ input_tensor = torch.zeros((1, 3, 72, 128), dtype=torch.float32, device=device)
37
 
38
  def preprocess_image(image):
39
  return cv2.resize(image, (128, 72), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0
 
49
  depth_map = predicted_depth.squeeze()
50
 
51
  # Discretization on GPU
52
+ num_bins = 256 # Match the color_map size
53
+ depth_map = torch.quantile(depth_map, torch.linspace(0, 1, num_bins, device=device))
54
+ depth_map = torch.bucketize(depth_map.squeeze(), depth_map)
 
55
 
 
 
56
  depth_map_colored = color_map[depth_map]
57
 
58
  return cv2.cvtColor(depth_map_colored.cpu().numpy(), cv2.COLOR_BGR2RGB)