Spaces:
Runtime error
Runtime error
File size: 1,336 Bytes
f8b3886 0143794 e8486cb f8b3886 79684c1 f8b3886 79684c1 e8486cb 79684c1 f8b3886 e8486cb f8b3886 79684c1 e8486cb 79684c1 e8486cb d4f8b39 79684c1 f8b3886 e8486cb 79684c1 e8486cb 79684c1 e8486cb f8b3886 e8486cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import cv2
import torch
import numpy as np
from transformers import DPTForDepthEstimation, DPTImageProcessor
import gradio as gr
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DPTForDepthEstimation.from_pretrained("./", local_files_only=True, torch_dtype=torch.float16).to(device)
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
@torch.inference_mode()
def process_frame(image):
rgb_frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
resized_frame = cv2.resize(rgb_frame, (128, 128), interpolation=cv2.INTER_AREA)
inputs = processor(images=resized_frame, return_tensors="pt").to(device)
inputs = {k: v.to(torch.float16) for k, v in inputs.items()}
predicted_depth = model(**inputs).predicted_depth
depth_map = predicted_depth.squeeze().cpu().numpy()
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
depth_map = (depth_map * 255).astype(np.uint8)
depth_map_colored = cv2.applyColorMap(depth_map, color_map)
return depth_map_colored
interface = gr.Interface(
fn=process_frame,
inputs=gr.Image(source="webcam", streaming=True),
outputs="image",
live=True,
refresh_rate=0.1
)
interface.launch() |