/** BUSINESS * * All utils that are bound to business logic * (and wouldn't be useful in another project) * should be here. * **/ import ctxLengthData from "$lib/data/context_length.json"; import { InferenceClient, snippets } from "@huggingface/inference"; import { ConversationClass, type ConversationEntityMembers } from "$lib/state/conversations.svelte"; import { token } from "$lib/state/token.svelte"; import { isCustomModel, isHFModel, Provider, type Conversation, type ConversationMessage, type CustomModel, type Model, } from "$lib/types.js"; import { safeParse } from "$lib/utils/json.js"; import { omit, tryGet } from "$lib/utils/object.svelte.js"; import { type InferenceProvider } from "@huggingface/inference"; import type { ChatCompletionInputMessage, InferenceSnippet } from "@huggingface/tasks"; import { type ChatCompletionOutputMessage } from "@huggingface/tasks"; import { AutoTokenizer, PreTrainedTokenizer } from "@huggingface/transformers"; import OpenAI from "openai"; import { images } from "$lib/state/images.svelte.js"; import { projects } from "$lib/state/projects.svelte.js"; import { structuredForbiddenProviders } from "$lib/state/models.svelte.js"; import { modifySnippet } from "$lib/utils/snippets.js"; type ChatCompletionInputMessageChunk = NonNullable extends string | (infer U)[] ? U : never; async function parseMessage(message: ConversationMessage): Promise { if (!message.images) return message; const urls = await Promise.all(message.images?.map(k => images.get(k)) ?? []); return { ...omit(message, "images"), content: [ { type: "text", text: message.content ?? "", }, ...message.images.map((_imgKey, i) => { return { type: "image_url", image_url: { url: urls[i] as string }, } satisfies ChatCompletionInputMessageChunk; }), ], }; } type HFCompletionMetadata = { type: "huggingface"; client: InferenceClient; args: Parameters[0]; }; type OpenAICompletionMetadata = { type: "openai"; client: OpenAI; args: OpenAI.ChatCompletionCreateParams; }; type CompletionMetadata = HFCompletionMetadata | OpenAICompletionMetadata; export function maxAllowedTokens(conversation: ConversationClass) { const ctxLength = (() => { const model = conversation.model; const { provider } = conversation.data; if (!provider || !isHFModel(model)) return; const idOnProvider = model.inferenceProviderMapping.find(data => data.provider === provider)?.providerId; if (!idOnProvider) return; const models = tryGet(ctxLengthData, provider); if (!models) return; return tryGet(models, idOnProvider) as number | undefined; })(); if (!ctxLength) return customMaxTokens[conversation.model.id] ?? 100000; return ctxLength; } function getResponseFormatObj(conversation: ConversationClass | Conversation) { const data = conversation instanceof ConversationClass ? conversation.data : conversation; const json = safeParse(data.structuredOutput?.schema ?? ""); // eslint-disable-next-line @typescript-eslint/no-explicit-any if (json && data.structuredOutput?.enabled && !structuredForbiddenProviders.includes(data.provider as any)) { switch (data.provider) { case "cohere": { return { type: "json_object", ...json, }; } case Provider.Cerebras: { return { type: "json_schema", json_schema: { ...json, name: "schema" }, }; } default: { return { type: "json_schema", json_schema: json, }; } } } } async function getCompletionMetadata( conversation: ConversationClass | Conversation, signal?: AbortSignal ): Promise { const data = conversation instanceof ConversationClass ? conversation.data : conversation; const model = conversation.model; const systemMessage = projects.current?.systemMessage; const messages: ConversationMessage[] = [ ...(isSystemPromptSupported(model) && systemMessage?.length ? [{ role: "system", content: systemMessage }] : []), ...data.messages, ]; const parsed = await Promise.all(messages.map(parseMessage)); const baseArgs = { ...data.config, messages: parsed, model: model.id, response_format: getResponseFormatObj(conversation), // eslint-disable-next-line @typescript-eslint/no-explicit-any } as any; // Handle OpenAI-compatible models if (isCustomModel(model)) { const openai = new OpenAI({ apiKey: model.accessToken, baseURL: model.endpointUrl, dangerouslyAllowBrowser: true, fetch: (...args: Parameters) => { return fetch(args[0], { ...args[1], signal }); }, }); const args = { ...baseArgs, // eslint-disable-next-line @typescript-eslint/no-explicit-any } as any; return { type: "openai", client: openai, args, }; } const args = { ...baseArgs, provider: data.provider, // max_tokens: maxAllowedTokens(conversation) - currTokens, // eslint-disable-next-line @typescript-eslint/no-explicit-any } as any; // Handle HuggingFace models return { type: "huggingface", client: new InferenceClient(token.value), args, }; } export async function handleStreamingResponse( conversation: ConversationClass | Conversation, onChunk: (content: string) => void, abortController: AbortController ): Promise { const metadata = await getCompletionMetadata(conversation, abortController.signal); if (metadata.type === "openai") { const stream = await metadata.client.chat.completions.create({ ...metadata.args, stream: true, } as OpenAI.ChatCompletionCreateParamsStreaming); let out = ""; for await (const chunk of stream) { if (chunk.choices[0]?.delta?.content) { out += chunk.choices[0].delta.content; onChunk(out); } } return; } // HuggingFace streaming let out = ""; for await (const chunk of metadata.client.chatCompletionStream(metadata.args, { signal: abortController.signal })) { if (chunk.choices && chunk.choices.length > 0 && chunk.choices[0]?.delta?.content) { out += chunk.choices[0].delta.content; onChunk(out); } } } export async function handleNonStreamingResponse( conversation: ConversationClass | Conversation ): Promise<{ message: ChatCompletionOutputMessage; completion_tokens: number }> { const metadata = await getCompletionMetadata(conversation); if (metadata.type === "openai") { const response = await metadata.client.chat.completions.create({ ...metadata.args, stream: false, } as OpenAI.ChatCompletionCreateParamsNonStreaming); if (response.choices && response.choices.length > 0 && response.choices[0]?.message) { return { message: { role: "assistant", content: response.choices[0].message.content || "", }, completion_tokens: response.usage?.completion_tokens || 0, }; } throw new Error("No response from the model"); } // HuggingFace non-streaming const response = await metadata.client.chatCompletion(metadata.args); if (response.choices && response.choices.length > 0) { const { message } = response.choices[0]!; const { completion_tokens } = response.usage; return { message, completion_tokens }; } throw new Error("No response from the model"); } export function isSystemPromptSupported(model: Model | CustomModel) { if (isCustomModel(model)) return true; // OpenAI-compatible models support system messages const template = model?.config.tokenizer_config?.chat_template; if (typeof template !== "string") return false; return template.includes("system"); } export const defaultSystemMessage: { [key: string]: string } = { "Qwen/QwQ-32B-Preview": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.", } as const; export const customMaxTokens: { [key: string]: number } = { "01-ai/Yi-1.5-34B-Chat": 2048, "HuggingFaceM4/idefics-9b-instruct": 2048, "deepseek-ai/DeepSeek-Coder-V2-Instruct": 16384, "bigcode/starcoder": 8192, "bigcode/starcoderplus": 8192, "HuggingFaceH4/starcoderbase-finetuned-oasst1": 8192, "google/gemma-7b": 8192, "google/gemma-1.1-7b-it": 8192, "google/gemma-2b": 8192, "google/gemma-1.1-2b-it": 8192, "google/gemma-2-27b-it": 8192, "google/gemma-2-9b-it": 4096, "google/gemma-2-2b-it": 8192, "tiiuae/falcon-7b": 8192, "tiiuae/falcon-7b-instruct": 8192, "timdettmers/guanaco-33b-merged": 2048, "mistralai/Mixtral-8x7B-Instruct-v0.1": 32768, "Qwen/Qwen2.5-72B-Instruct": 32768, "Qwen/Qwen2.5-Coder-32B-Instruct": 32768, "meta-llama/Meta-Llama-3-70B-Instruct": 8192, "CohereForAI/c4ai-command-r-plus-08-2024": 32768, "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768, "meta-llama/Llama-2-70b-chat-hf": 8192, "HuggingFaceH4/zephyr-7b-alpha": 17432, "HuggingFaceH4/zephyr-7b-beta": 32768, "mistralai/Mistral-7B-Instruct-v0.1": 32768, "mistralai/Mistral-7B-Instruct-v0.2": 32768, "mistralai/Mistral-7B-Instruct-v0.3": 32768, "mistralai/Mistral-Nemo-Instruct-2407": 32768, "meta-llama/Meta-Llama-3-8B-Instruct": 8192, "mistralai/Mistral-7B-v0.1": 32768, "bigcode/starcoder2-3b": 16384, "bigcode/starcoder2-15b": 16384, "HuggingFaceH4/starchat2-15b-v0.1": 16384, "codellama/CodeLlama-7b-hf": 8192, "codellama/CodeLlama-13b-hf": 8192, "codellama/CodeLlama-34b-Instruct-hf": 8192, "meta-llama/Llama-2-7b-chat-hf": 8192, "meta-llama/Llama-2-13b-chat-hf": 8192, "OpenAssistant/oasst-sft-6-llama-30b": 2048, "TheBloke/vicuna-7B-v1.5-GPTQ": 2048, "HuggingFaceH4/starchat-beta": 8192, "bigcode/octocoder": 8192, "vwxyzjn/starcoderbase-triviaqa": 8192, "lvwerra/starcoderbase-gsm8k": 8192, "NousResearch/Hermes-3-Llama-3.1-8B": 16384, "microsoft/Phi-3.5-mini-instruct": 32768, "meta-llama/Llama-3.1-70B-Instruct": 32768, "meta-llama/Llama-3.1-8B-Instruct": 8192, } as const; // Order of the elements in InferenceModal.svelte is determined by this const export const inferenceSnippetLanguages = ["python", "js", "sh"] as const; export type InferenceSnippetLanguage = (typeof inferenceSnippetLanguages)[number]; export type GetInferenceSnippetReturn = InferenceSnippet[]; export function getInferenceSnippet( conversation: ConversationClass, language: InferenceSnippetLanguage, accessToken: string, opts?: { messages?: ConversationEntityMembers["messages"]; streaming?: ConversationEntityMembers["streaming"]; max_tokens?: ConversationEntityMembers["config"]["max_tokens"]; temperature?: ConversationEntityMembers["config"]["temperature"]; top_p?: ConversationEntityMembers["config"]["top_p"]; structured_output?: ConversationEntityMembers["structuredOutput"]; } ): GetInferenceSnippetReturn { const model = conversation.model; const data = conversation.data; const provider = (isCustomModel(model) ? "hf-inference" : data.provider) as InferenceProvider; // If it's a custom model, we don't generate inference snippets if (isCustomModel(model)) { return []; } const providerMapping = model.inferenceProviderMapping.find(p => p.provider === provider); if (!providerMapping) return []; const allSnippets = snippets.getInferenceSnippets( { ...model, inference: "" }, accessToken, provider, { ...providerMapping, hfModelId: model.id }, opts ); if (opts?.structured_output && !structuredForbiddenProviders.includes(provider as Provider)) { allSnippets.forEach(s => { const modified = modifySnippet(s.content, { prop: "hi" }); if (s.content === modified) { console.log("Failed for", s.language, "\n"); } else { console.log("Original snippet"); console.log(s.content); console.log("\nModified"); console.log(modified); console.log(); } }); } return allSnippets .filter(s => s.language === language) .map(s => { if (opts?.structured_output && !structuredForbiddenProviders.includes(provider as Provider)) { return { ...s, content: modifySnippet(s.content, { response_format: getResponseFormatObj(conversation), }), }; } return s; }); } const tokenizers = new Map(); export async function getTokenizer(model: Model) { if (tokenizers.has(model.id)) return tokenizers.get(model.id)!; try { const tokenizer = await AutoTokenizer.from_pretrained(model.id); tokenizers.set(model.id, tokenizer); return tokenizer; } catch { tokenizers.set(model.id, null); return null; } } // When you don't have access to a tokenizer, guesstimate export function estimateTokens(conversation: Conversation) { const content = conversation.messages.reduce((acc, curr) => { return acc + (curr?.content ?? ""); }, ""); return content.length / 4; // 1 token ~ 4 characters } export async function getTokens(conversation: Conversation): Promise { const model = conversation.model; if (isCustomModel(model)) return estimateTokens(conversation); const tokenizer = await getTokenizer(model); if (tokenizer === null) return estimateTokens(conversation); // This is a simplified version - you might need to adjust based on your exact needs let formattedText = ""; conversation.messages.forEach((message, index) => { let content = `<|start_header_id|>${message.role}<|end_header_id|>\n\n${message.content?.trim()}<|eot_id|>`; // Add BOS token to the first message if (index === 0) { content = "<|begin_of_text|>" + content; } formattedText += content; }); // Encode the text to get tokens const encodedInput = tokenizer.encode(formattedText); // Return the number of tokens return encodedInput.length; }