Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,087 Bytes
52c6f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import { last } from "$lib/utils/array.js";
import { StreamWriter } from "$lib/utils/stream.js";
import { json } from "@sveltejs/kit";
import type { ChatCompletionMessage } from "openai/resources/index.mjs";
import type { RequestHandler } from "./$types.js";
import { createAdapter, type GenerationArgs } from "./adapter.js";
import { connectToMCPServers, executeMcpTool, type MCPServerConnection } from "./mcp.js";
import type { FinishReason, GenerateRequest } from "./types.js";
import { debugLog } from "./utils.js";
type AssistantResponse = { message: ChatCompletionMessage; finish_reason: FinishReason };
type GenerateLoopArgs = {
args: GenerationArgs;
getAssistantResponse: (args: GenerationArgs) => Promise<AssistantResponse>;
connections: MCPServerConnection[];
};
async function generateLoop({ args, getAssistantResponse, connections }: GenerateLoopArgs) {
let finish_reason: FinishReason | null = null;
const abortReasons: FinishReason[] = ["stop", "content_filter", "length"];
while (!abortReasons.includes(finish_reason)) {
debugLog("finish reason", finish_reason);
switch (finish_reason) {
case null: {
const res = await getAssistantResponse(args);
args.messages.push(res.message);
finish_reason = res.finish_reason;
break;
}
case "tool_calls": {
const toolCalls = last(args.messages)?.tool_calls;
if (!toolCalls) {
debugLog("No tool calls found");
finish_reason = null;
break;
}
debugLog("Executing tool calls");
debugLog(JSON.stringify(toolCalls, null, 2));
await Promise.allSettled(
toolCalls.map(async toolCall => {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const response = await executeMcpTool(connections, toolCall as any);
debugLog("Tool call response", response);
args.messages.push(response);
}),
);
finish_reason = null;
break;
}
default: {
finish_reason = "stop";
break;
}
}
}
}
export const POST: RequestHandler = async ({ request }) => {
try {
const body: GenerateRequest = await request.json();
const { model, messages, config, provider, streaming, response_format, enabledMCPs } = body;
if (enabledMCPs?.length === 0) {
debugLog(`MCP: Enabled MCP servers: ${enabledMCPs?.join(", ")}`);
}
// Connect to enabled MCP servers
const connections = await connectToMCPServers(enabledMCPs || []);
const tools = connections.flatMap(conn => conn.tools);
debugLog(`MCP: Connected to ${connections.length} servers with ${tools.length} tools available`);
const adapter = createAdapter(body);
const args = {
model: model.id,
messages,
provider,
...config,
tools,
response_format,
stream: streaming,
};
if (streaming) {
const writer = new StreamWriter();
generateLoop({
args,
connections,
getAssistantResponse: async args => {
debugLog("Generating streaming response");
const res: AssistantResponse = {
message: {
role: "assistant",
content: "",
// refusal: null,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} as any,
finish_reason: null,
};
try {
const adapterStream = await adapter.stream(args);
for await (const chunk of adapterStream) {
const choice = chunk.choices[0];
if (!choice) continue;
if (choice.delta.content) {
res.message.content += choice.delta.content;
writer.writeChunk(choice.delta.content || "");
}
if (choice.delta.tool_calls) {
res.message.tool_calls = res.message.tool_calls ?? [];
for (const toolCall of choice.delta.tool_calls) {
res.message.tool_calls[toolCall.index] = res.message.tool_calls[toolCall.index] ?? {
id: toolCall.id ?? "",
type: "function",
function: {
name: "",
arguments: "",
},
};
if (toolCall.function?.name) {
res.message.tool_calls[toolCall.index]!.function.name += toolCall.function.name;
}
if (toolCall.function?.arguments) {
res.message.tool_calls[toolCall.index]!.function.arguments += toolCall.function.arguments;
}
}
}
if (choice.finish_reason) {
res.finish_reason = choice.finish_reason;
}
}
} catch (error) {
console.error("stream error", error);
writer.error(error instanceof Error ? error : new Error(String(error)));
res.finish_reason = "stop";
return res;
}
debugLog("Generated message");
debugLog(JSON.stringify(res.message, null, 2));
return res;
},
})
.then(() => writer.end())
.catch(error => {
console.error("Generation loop error:", error);
writer.error(error instanceof Error ? error : new Error(String(error)));
});
debugLog("Creating response...");
return writer.createResponse();
}
const message: ChatCompletionMessage = {
role: "assistant",
content: "",
// refusal: null,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} as any;
await generateLoop({
args,
connections,
getAssistantResponse: async args => {
debugLog("Generating non-streaming response");
const response = await adapter.generate(args);
debugLog("Generated the response");
debugLog(JSON.stringify(response, null, 2));
if (response.choices && response.choices.length > 0) {
message.content += response.choices[0]!.message.content ?? "";
// const { completion_tokens } = response.usage || { completion_tokens: 0 };
return {
message: response.choices[0]!.message,
finish_reason: response.choices[0]!.finish_reason,
};
}
throw new Error("No response from the model");
},
});
return json({ message /* ,completion_tokens */ });
} catch (error) {
debugLog(JSON.stringify(error, null, 2));
console.error("Generation error:", error);
return json({ error: error instanceof Error ? error.message : "Unknown error occurred" }, { status: 500 });
}
};
|