Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,610 Bytes
09dd649 c947ff2 466e3e5 ab0c591 e82e1d3 a5d07a8 ea33f68 323e41c ea33f68 a5d07a8 ea33f68 a5d07a8 ea33f68 a5d07a8 323e41c d26d037 c947ff2 09dd649 c947ff2 09dd649 d26d037 09dd649 c947ff2 09dd649 d418457 ab0c591 c947ff2 d418457 466e3e5 d418457 3fb0bbe aa5e815 c947ff2 ab0c591 2160828 ab0c591 e82e1d3 ab0c591 09dd649 ab0c591 2160828 09dd649 9a4bcc3 09dd649 78c40b7 323e41c 09dd649 c947ff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
import html # <--- 1. 导入 html 模块
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
MODEL_ID = "XiaomiMiMo/MiMo-VL-7B-RL" # Alternatively: "XiaomiMiMo/MiMo-VL-7B-RL"
# MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "XiaomiMiMo/MiMo-VL-7B-RL"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
print(f"Successfully load the model: {model}")
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict["files"]
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
return
if text == "" and images:
gr.Error("Please input a text query along with the image(s).")
return
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=4096)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with MiMo-VL-7B-RL Model")
for new_text in streamer:
escaped_new_text = html.escape(new_text)
buffer += escaped_new_text
time.sleep(0.01)
yield buffer
examples = [
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
[{"text": "How many dog in the image?", "files": ["example_images/dogs.jpg"]}],
[{"text": "How many dog in the image? Count the dog by grounding. Put the numberin \\boxed{}", "files": ["example_images/dogs.jpg"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**",
examples=examples,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
demo.launch(debug=True) |